This is a list of selected functions from the
standard Haskell modules: Prelude Data.List
Data.Maybe Data.Char Control.Monad

—— standard type classes

class Showa where

show : a —> String
class Ega where
==), (=) ©* a ->a —>Bool
class (Ega)=>0rda where
(9, (<2), =),) ta ->a ->Bool
max, min T a —>a —>a
class (Eqga, Show a) => Num a where
(). (2). na —>a —>a
negate Da —>a
abs, sighum D a —>a
frominteger : Integer —>a
class (Num a, Ord a) => Real a where
toRational @ a —> Rational
class (Real a, Enum a) => Integral a where
quot, rem DT a —>a —>a
div, mod D a —>a —>a
tolnteger 1 a —>Integer
class (Num a) => Fractional a where
D a —>a —>a
fromRational : Rational ->a
class (Fractional a) => Floating a where
exp, log, sqrt a —>a
sin, cos, tan Da —>a
class (Real a, Fractional a) => RealFrac a where
truncate, round (Integral b) => a ->b
ceiling, floor (Integral b) => a ->b
—- numerical functions
even, odd . (Integral @) => a —> Bool
evenn =n ‘rem* 2==0
odd =not. even
—- monadic functions
sequence ::Monad m=>[ma] ->mJa]
sequence = foldr mcons (return 0)
where mconspq = dox<-p
Xs<—q
return (x 1 XS)
sequence_ ::Monad m=>[ma]->m|)
sequence_ Xs = do sequence xs
return ()

liftM :: (Monad m)=>(al->r)->mal->mr
liftM fml = do x1 <-mil
return (f x1)

—— functions on functions

id ra->a

id x =X

const sa->b->a

constx _ =X

) i (b ->¢) ->(@ ->b) ->a ->c
f.g =\x ->f(gx)

flip t(@->b->c)->b->a->c

fipfxy =fyx

(%) 2 (@ ->b) ->a ->b

f$x =fx

—— functions on Bools
data Bool = False | True

(&&), () :» Bool ->Bool ->Bool
True && x =X

False && _ = False

True || _ = True

False || x =X

not :: Bool —> Bool

not True = False

not False =True

—— functions on Maybe
data Maybe a = Nothing | Just a

isJust,isNothing :» Maybe a —> Bool
isJust (Just a) = True

isJust Nothing = False

isNothing = not . isJust
fromJust :: Maybe a —>a
fromJust (Justa) = a
maybeTolList :» Maybe a —> [a]
maybeToList Nothing =
maybeTolList (Justa) = [a]
listToMaybe :: [a] —> Maybe a
listToMaybe 0 = Nothing
listToMaybe (a :) = Justa

catMaybes :: [Maybe a] —> [a]
catMaybes Is = [x]|Justx <—1Is]

—— functions on pairs

fst D (ab)—>a

fst (x,y) =X

snd 2 (ab)->b
snd(xy) =y

swap :(a,b) —> (b,a)
swap (a,b) =(b,a)

curry :: ((@,b)->c)->a->b->c
curry fxy = f(xy)

uncurry :: (a=>b —=>c) —> ((a, b) =>¢)
uncurry fp = f(fst p) (snd p)

—— functions on lists

map :: (a —>b) —> [a] => [b]

map f xs = [fx]x<-xs]
(++) = [a] ->[a] —=> [a]
xs ++ys = foldr (1) YS XS

filter :: (a —> Bool) —> [a] —> [a]
filter p xs = [X]x<=xs,pXx]

concat :: [[a]] —> [a
concat xss = foldr (++) [l xss

concatMap :: (a —> [b]) —> [a] —> [b]
concatMap f = concat . map f

head, last tlal—>a

head (x :_) =X

last [x] =X

last(_ :xs) =lastxs

tail, init i [a] —> [a]

tail (. :xs) =xs

init [x] = 0

init (x 1XS) =X :initxs
null :: [a] —> Bool

null] =True

null(C :)) = False

length :[a] => Int

length = foldr (const (1+)) 0
(@) t [a] —=>Int ->a

(§<':_) o =x
C:xs)'n =xs!l(n-1)

foldr :(@a->b->b)->b->[a]->b
foldr fz 1] =z
foldr f z (x 1 xs) = fx (foldr f z xs)

foldl :(a->b->a)->a->[b]->a
foldl f z] =z
foldl f z (x : xs) = foldl f (f z x) xs

iterate t(@a-—>a)—>a—>[q]
iterate fx = X : iterate f (f x)
repeat ra—>[a]
repeat x = Xs where xs=x :Xs
replicate tint->a->Ja]
replicate n x = take n (repeat x)
cycle 2 [a]l =>[a]
cycle] = error" Prelude.cycle: empty list"
cycle xs = xs' where xs’ =Xxs ++ xs’
tails :[al —>[[al]
tails xs = Xs case xs of

0 -> [

: xs' —>tails xs’

take, drop ant—>[a] —>[a]

taken_ |n<=0=

take _ [] = 0

taken(x :xs) =X : take (n—-1) xs

dropnxs |n<=0= xs
drop _] = [
dropn(_ :XxsS) = drop (n—1) xs

splitAt o Int => [a] —> ([a],[a])
splitAt n xs = (take n xs, drop n xs)

takeWhile, dropWhile :: (a —> Bool) —> [a] —> [a]
takeWhile p 1] = 0
takeWhile p (x 1 XS)
[px =X : takeWhile p xs
| otherwise = 0

dropWhile p Il =
dropWhile p xs@(x : xs’)
p X = dropWhile p xs’
| otherwise = xs

span :: (a —> Bool) —> [a] —> ([a], [a])
span p as = (takeWhile p as, dropWhile p as)

lines, words :: String —> [String]
—- lines "apa\nbepa\ncepa\n”
—— == ['apa”,"bepa”,"cepa’]
—— words "apa bepa\n cepa"
—— == ["apa","bepa" "cepa’]

unlines, unwords :: [String] —> String
——unlines ["apa","bepa”,"cepa"]

- == "apa\nbepa\ncepa\n”

—— unwords ["apa","bepa","cepa"]
- == "apa bepa cepa"

reverse = [a] —>[a]
reverse = foldl (flip () 1
and, or :: [Bool] —> Bool
and = foldr (&&) True
or = foldr (]|) False
any, all :: (@ —>Bool) —> [a] —> Bool
any p = or.map p
allp = and.mapp
elem, notElem :: (Ega)=>a —>[a] —> Bool
elem x = any (==x)
notElem x = all (/=x)
lookup :(Eqa)=>a->[(a,b)] —> Maybe b
lookup key 1| = Nothing
lookup key ((x,y) 1 XyS)
| key ==x = Justy

| otherwise = lookup key xys

sum, product :: (Numa)=>[a] —>a
sum = foldl (+) O
product = foldl (*) 1

maximum, minimum :: (Ord a) => [a] => a
maximum [] =error" Prelude.maximum: empty list"

maximum (x : xs) = foldl max x xs

minimum [] =error" Prelude.minimum: empty list"
minimum (X : xs) = foldl min x xs
zip 1t [a] => [b] => [(a,b)]
zip = zipWith (,)
zipWith i (a—>b—>c) —> [a]—>[b]—>[c]
ZipWith z (a ;as) (b :bs)
=zab : zipWith z as bs
zipwith __ = 1l
unzip i [(ab)] => ([a],[b])
unzip =
foldr (\(a,b) ~(as,bs) —>(a:asb:bs))([0.0)
nub Eqa=>[a] —>[a]
nub] = [
nub (x :xs) =
X cnub [y|ly<—-xs,x/=y]
delete cEga=>a->[a] —>[a]
delete y 1l = 1l
delete y (x 1XS) =
if x==y then xs else x : deleteyxs
) ©: Eqa=> [a] —>[a] —> [a]
()] = foldl (flip delete)
union Eqa=>[a] ->[a] —> [a]
union xsys = xs ++ (ys \\ xs)
intersect :Eqa=>[a] —>[a] —> [a]
intersect xs ys = [x|x<=xs,x ‘elem’ ys]
intersperse :1a->[a] —>[a]

—— intersperse 0 [1,2,3,4] ==[1,0,2,0,3,0,4]

transpose]l —> [[a]]
—— transpose [[1,2,3],[4,5,6]]
—— ==[[1,4].[2,5],[3,6]]

partition :: (a —> Bool) —> [a] —> ([a],[a])
partition p xs =
(filter p xs, filter (not . p) xs)

group ::Eqa=>[a] —>[[a]]

group = groupBy (==)

groupBYy :: (a —>a —> Bool) —> [a] —> [[a]]
groupBy _] =

groupBy eq (x : xs)= (x 1ys) : groupBy eqzs
where (ys,zs) = span (eq X) xs

isPrefixOf :: Eq a => [a] —> [a] —> Bool

isPrefixOf 1 _ = True
isPrefixOf _ 1l = False
isPrefixOf (x iXS)(y :ys)= x==y

&& isPrefixOf xs ys
isSuffixOf :: Eq a => [a] —> [a] —> Bool
isSuffixOf x y = reverse x
‘isPrefixOf* reverse y

sort :: (Ord a) => [a] —> [a]
sort = foldr insert {1

insert ::(Ord @) =>a —>[a] —> [a]
insert x 1] = X
insert x (y 1Xs) =

if x<=y then x:y:xs else y :insertxxs

—— functions on Char
type String = [Char]

toUpper, toLower :: Char —> Char
——toUpper 'a’ =="A’
—— toLower 'Z' =='7'

digitTolnt :: Char —> Int
——digitToInt '8 == 8

intToDigit :: Int —> Char
—-— intToDigit 3 =="3’

ord :: Char —> Int
chr :: Int => Char

—— Signatures of some useful functions
—— from Test.QuickCheck

arbitrary :: Arbitrary a => Gen a
—— the generator for values of a type
——in class Arbitrary, used by quickCheck

choose :: Random a => (a, a) > Gena
—— Generates a random element in the given
—— inclusive range.

oneof :: [Gen a] —> Gen a
—— Randomly uses one of the given generators

frequency :: [(Int, Gen a)] —> Gen a
—— Chooses from list of generators with
—— weighted random distribution.

elements :: [a] -—> Gena
—-— Generates one of the given values.

listOf :: Gen a —> Gen [a]
—- Generates a list of random length.

vectorOf :: Int => Gen a —> Gen [a]
—-— Generates a list of the given length.

sized :: (Int —> Gen a) —> Gen a
—— construct generators that depend on
—- the size parameter.

—— Useful 10 function

putStr, putStrLn :: String => 10 ()
getLine :: 10 String

readFile :: FilePath —> 10 String
writeFile :: FilePath —> String => 10 ()

