
9/7/17

1

Introduction to	Message Passing
Fri	8	Sep	2017

K.	V.	S.	Prasad
Dept	of	Computer	Science

Chalmers	University
Lecture 5	of TDA384/DIT301,		August	–October 2017

Plan	for	today

• Shared memory:	recap
• Chap 8:	Message passing

• (the	book does not	do	many examples;	we’ll try	to	do	more)
• Skipped for	now

• the	rest	of
• Chap 3	(Critical Section)
• Chap 6		(Semaphores)
• Chap 7	(Monitors)

• And	all	of
• Chap 4	(Proofs)
• Chap 5	(Further algorithms for	CS)

• REMINDER:	exercises in	Chaps.	1,	2,	3,	6,	7
• Try	them in	Promela.		Use various assertions.

9/7/17

2

Why	concurrency	at	all?

• Speed	(parallelism)
• Modelling	real	life	agents/actors/processes
• Historically
• I/O	devices	running	in	parallel	with	CPU
• Multiprogramming,	programs	sharing	a	CPU
• Time	sharing

• Between	people,	back	when	they	shared	a	CPU

Communication	and	Concurrency

• Shared	memory	is	a	means	of	communication
• Concurrent	processes	that	don’t	communicate
• Are	simply	leading	independent	lives
• Nothing	much	to	say	about	them

• No	deadlocks	or	mutex issues
• No	benefits	either	from	concurrency

• Are	there	other	means	of	communication?
• Of	course!	Look	at	us!

9/7/17

3

Historical Transition

• Why did we need other models?
• Computers started talking to	each other – late	60’s

• Not	just	to	I/O	devices

• Hoare 1978
• arrived before distributed systems
• I	see it	as	the	first	realisation	that

• Atomic	actions,	critical regions,	semaphores,	monitors…
• Can	be	replaced by	just	I/O	as	primitives!

• Advent	of distributed systems
• Mostly by	packages such as	MPI

• Message passing interface

Models of	Communication

• Speech =	broadcast
• Synchronous communication
• Asynchronous actions (not	clocked)
• Speaker	autonomous

• Post	or	email =	asynchronous channel (buffer)
• Both communication and	action	asynchronous
• Speaker	autonomous

• Telephone	=	synchronous channel =	0	size buffer
• Synchronous communication and	actions
• Only internal actions autonomous

9/7/17

4

Addressing

• Broadcast
• Sender and/or	receiver	anonymous

• Can	be	named (maybe)	in	message

• Post,	email,	telephone
• Receiver	named (envelope,	header,	number)

• Sender need not	be	(but can)

• What is	addressed?
• Processes?	Channels?

What do processes
communicate or	share?
• Data

• Tell	me what you’ve heard
• Resources

• Databases – don’t want inconsistent DB
• printer	– don’t want interleaved printouts

• Timing	signals
• Pure	timing	signals:	empty envelopes,	beeps,	etc.

• So	expect (equivalents of)	semaphores,	etc.
• Channels	can be	shared between processes

• In	some languages
• But in	Erlang,	e.g.,	only one proc can input	from	it

9/7/17

5

Semaphore by	synchronous channels
Each user:

loop
chwait =>	token
crit sec
chsignal <=	token

Semaphore:	
loop
chwait <=	token
chsignal =>	token

1:		Information	flows along the	arrows =>	and	<=,	so	that <=	means output	value,	and	=>	means input	to	variable.
2.	Only one of	contending users gets	the	token	from	chwait,	and	the	semaphore then waits till	this	user returns the	token.
3.	The	token	is	just	a	dummy	(uint type,	empty envelope)

Notational	quarrel	with	Ben-Ari

• The	=>	and	<=	have	a	clear	logic	about	which	way	the	information	
flows,	but
• Output	can	be	written	5	=>	chan or	chan <=	5,	which	makes	it	hard	to	keep	
track.
• The	notation	=>	also	means	“implies”	in	logic,	so	clashed	often	in	discussions
• The	notation	chan!5	and	chan?x are	to	my	mind	both	clearer,	and	traditional.		
Output	always	has	a	!	and	input	a	?	after	the	channel	name.
• The	!	and	?	Notation	also	goes	well	with	a	functional	notation	for	processes.

9/7/17

6

CS	using	synchronous	semaphore
loop

p1:	chwait =>	token
p2:	crit sec
p3:	chsignal <=	token

loop
q1:	chwait =>	token
q2:	crit sec
q3:	chsignal <=	token

Mutex: p2	implies	P	has	successfully	done	p1;	P	has	the	token.		Then	
Semaphore	permits	only	chsignal (return	token),	so	Q	cannot	get	the	token.

Deadlock-free: If	Semaphore	is	busy	(the	token	is	out),	either	P@p2	or	P@p3		
or	Q@q2or	Q@q3	(either	P	or	Q	has	the	token).		So	if	P@p1	and	Q@q1,	then	
Semaphore	has	the	token.		It	will	accept	chwait,	from	either	P	or	Q.

Starvation:		Possible,	if	P	wins	every	time.		A	fair	semaphore	will	ensure	that	
when	Q	repeatedly	asks,	it	will	be	granted	at	some	point.

P: Q:

Detour:	Pure	signals

• A	pure	(synchronisation)	signal	is
• A	dummy	variable	with	only	one	value
• Or	empty	envelope	in	the	post
• Or	missed	call	on	the	phone

• How	to	communicate	for	free	using	these	calls

• Along	a	channel	or	broadcast	or	stored	in	a	shared	variable
• Can	be	used	as	a	timing	signal	saying	agreed	event	has	happened.		

9/7/17

7

Broadcast channel is	a	semaphore!

Each user (i):

loop

either -

ch <=	i

crit sec

ch <=	done

or

ch =>	j

ch =>	done

1:		Did I	succeed in	speaking (tjing)?		If	so,	I	enter my	CS.		The	others can’t enter theirs.

2.		Those who did not	get	to	make	their request wait till	they hear another message.

3.	Here the	channel is	used only for	this	semaphore.		If it	is	used for	other things too,		the	losing process	should
test	what it	hears till	it	hears done.

Examples from	the	book

• Producer-consumer
• Doesn’t matter whether synch/asynch

• Matrix-multiplication
• Here,	could be	synchronous action	:	gangstepped

• Dining	philosophers
• With	synchronous channels only.
• Each fork behaves like	a	semaphore
• Both deadlock and	starvation seem possible!

9/7/17

8

Examples from	the	book

• Producer-consumer
• Doesn’t matter whether synch/asynch

• Matrix-multiplication
• Here,	could be	synchronous action	:	gangstepped

• Dining	philosophers
• With	synchronous channels only.
• Each fork behaves like	a	semaphore
• Both deadlock and	starvation seem possible!

The	matrix	example

-- -- -- --
1 2 3		1 0 2
4 5 6	X	0 1 2
7 8 9		1 0 0
-- --
Have	to	do	a	series	of	dot	products	like

[7,	8,	9]	X		|	2		|			=		7*2		+	8*2		+		9*0		=	14+16+0	=	30
|	2		|
|	0		|

9/7/17

9

Rendezvous

• Like	synchronous channel,	except
• Addressing asymmetric

• Sender knows receiver’s address (entry),	not	v-v.
• The	communication may involve computation and	return of	value by	the	
receiver
• So	made for	client-server

Ada

• Uses protected objects
• Since the	1980’s

• though the	concept was around earlier
• Thus has	the	cleanest shared memory model

• Also has	a	very good communication model
• Rendezvous

• Ada	was decided carefully through the	1970s
• Open	debates and	process	of	definition

• Has	fallen	away because of	popularity of	C,	etc.
• Use now seen as	a	proprietary secret!

9/7/17

10

Robin	Milner (1934-2010)

• Turing	Award	1992	for	CCS,	ML		and	LCF!
• Went on	to	develop pi-calculus
• Functions as	processes

• Bigraphs
• CCS	uses synchronous channels to	make	a	complete calculus
(programming and	reasoning)

