Erlang and message passing




What does f(5) return?

f(0) -> 0;
f(N) -> N+ f(N-1).

1.0
2.5
3. 15
4. the factorial of 5

16/42



What does f(5) return?

f(0) -> 0;
f(N) -> N+ f(N-1).

1.0
2.5
& 18
4. the factorial of 5

16/42



What does g([a,b,c,d,e, f,g]) return?

g(ll) -> I[1;
g([X1) -> [XI;

g(IX|Y[T]) -> [X]g(T)].

0N~

[]
[al
[a,b,c,d,e,f,ql]

[a,c,e,q]

17/42



What does g([a,b,c,d,e, f,g]) return?

g(ll) -> I[1;
g([X1) -> [XI;

g(IX|Y[T]) -> [X]g(T)].

0N~

[]
[al
[alblcldlelflg]

[a,c,e,q]

17/42



What do h({3,3}) and h({4,3}) return?

h({3,B}) -> B;
h({-,3}) -> 3;
h({_,-}) -> 4.

1. 3and 3
2. 3and 4
3. 4and 3
4. 4and 4

18/42



What do h({3,3}) and h({4,3}) return?

h({3,B}) -> B;
h({-,3}) -> 3;
h({_,-}) -> 4.

1. 3and 3
2. 3and 4
3. 4and 3
4. 4and 4

18/42



What does k([1) return?

k({-,-,-}) -> [3,3,3];
k(X) ->
case X of
{A,B} -> A + B;
_ -=> 0

end.

1.0

2. [3,3,3]

3. It throws an exception
4. {0,0}

19/42



What does k([1) return?

k({-,-,-}) -> [3,3,3];
k(X) ->
case X of
{A,B} -> A + B;
_ -=> 0

end.

1.0

2. [3,3,3]

3. It throws an exception
4. {0,0}

19/42



What does process Q print?

process P process Q

-> % P is P’s pid
p() -> % Q is Q’s pid e g

Q ! {self(), 0},
Q ! {self(), 2}.

receive {P, N} ->
io:format("~p", [N+1]) end,
q().

1. 0 and 2, in any order
2. 0 and then 2
3. 1andthen 3
4. 1 and 3, in any order

20/42



What does process Q print?

process P process Q

-> % P is P’s pid
p() -> % Q is Q’s pid e g

Q ! {self(), 0},
Q ! {self(), 2}.

receive {P, N} ->
io:format("~p", [N+1]) end,
q().

1. 0 and 2, in any order
2. 0 and then 2
3. 1 and then 3
4. 1 and 3, in any order

20/42



What do processes P and Q print?

process P
p() ->
Q!o,
receive {P, N} ->
, [N+11)

% Q is Q’s pid

io:format("~p"
end.

1. 0 and 2, in any order
2. 0 and then 2
3. 1 and then 3
4. 1 and 3, in any order

process Q

q() ->
P! 2,
receive {Q, N} ->

% P is P’s pid

io:format("~p", [N+1])

end.

21/42



What do processes P and Q print?

process P
p() ->
Q!'!o,
receive {P, N} ->
, [N+1])

% Q is Q’s pid

io:format("~p"
end.

1. 0 and 2, in any order
2. 0 and then 2
3. 1 and then 3
4. 1 and 3, in any order

process Q

q() ->
P! 2,
receive {Q, N} ->

% P is P’s pid

io:format("~p", [N+1])

end.

21/42



What does process Q print?

process P
p() -> % Q is Q’s pid

self() ! self(),
receive self() ->

Q!

{self(),

fun (Y) -> Y+1 end}
end.

1. 3
2. 4
3. P’s pid (process identifier)
4. Q's pid (process identifier)

process Q

q() -> % P is P’s pid

receive {P, F}

io:format("~p",

->

[F(3)]) end.

22/42



What does process Q print?

process P
p() -> % Q is Q’s pid

self() ! self(),
receive self() ->

Q!

{self(),

fun (Y) -> Y+1 end}
end.

1. 3
2.4
3. P’s pid (process identifier)
4. Q's pid (process identifier)

process Q

q() -> % P is P’s pid

receive {P, F}

io:format("~p",

->

[F(3)]) end.

22/42



