Spatial Data Structures
and Speed-Up Techniques

Ulf Assarsson

Department of Computer Science and
Engineering

Chalmers University of Technology

Have you done your homework ;-) ?
Exercises

e Create a function (by writing code on
paper) that tests for intersection between:
- two spheres
— aray and a sphere
— view frustum and a sphere
- Ray and triangle (e.g. use formulas from last

lecture)
e Make sure you understand matrices:

- Give a scaling matrix, translation matrix, rotation
matrix and simple orthogonal projection matrix

Ray/sphere test
e Ray: r(t)=o+td
e Sphere center: ¢, and radius r

/
0
e Sphere formula: ||p-c||=r
e Replace p by r(¢), and square it: @
(o+td—c)-(o+td—c)—r" =0

t” +2((0-c) d)t +(0 - ¢y (0-c¢) -7’ /Q

2a 2a
Bool raySpherelntersect(vec3f o, d, ¢, float r, Vec3f &hitPt) {
float b = 2.0f*((0-¢).dot(d)); // dot is implemented in class Vec3f
float ¢ = (0-¢).dot(o-c¢);
if(b*b/4.0f<c) return false;
float t = -b/(2.0f) - sqrt(b*b/4.0f-c); // intersection for smallest t
if (t<0) t = -b/(2.0f*a) + sqrt(b*b/4.0f-c); // larger t
if (t<0) return false; else hitPt = o+d*t; / where * is an operator for vec mul
return true;

a

-b b
ax*+bx +¢c=0 = x=—= ()_E

Misc

e Half Time wrapup slides are available in
“Schedule” on home page

e There is an Advanced Computer
Graphics Seminar Course in sp 3+4, 7.5p

- One seminar every week
e Advanced CG techniques

- Do a project of your choice.
— Register to the course

Spatial data structures
e What is it?

— Data structure that organizes geometry in 2D or 3D or
higher

- The goal is faster processing

- Needed for most "speed-up techniques”
e Faster real-time rendering
e Faster intersection testing
e Faster collision detection
e Faster ray tracing and global illumination

e Games use them extensively

e Movie production rendering tools always use
them too

(You may read "Designing a PC Game
Engine”. Link available on website)

>l

S an

TDA361 Computer Graphics

3 http:/ /www.cse.chalmers.se/edu/course/TDA361/index.html

Google

Apple

Yahoo! Google Maps YouTube News (424)v Popularv Dictionary.com Eniro Personer Ulf Assarss...s Home Page

o week 6: room HC1
o week 7: room HC3

NOTE 2: The follow-up course,
DAT205 Advanced Computer Graphics, will run in
study period 3+4 as usual, despite what studentportalen says.

Home page is continuously being updated

COURSE-PM

Course start: (sp2, week 1). Lectures each Wednesday 10-12, and Friday 9-12.
7.5 Hogskolepoéang

Grades: U (failed), 3,4, 5

Educational Level: Advanced

Institution: 37 - DATA- OCH INFORMATIONSTEKNIK

Teaching language: English

Teacher and Examiner: UIf Assarsson, intern phone 1775 (031-7721775)

room 4115, floor 4, the corridor along Rannvéagen, ED-huset E-mail: see above.

Course assistants: Erik Sintorn (erik dot sintorn at chalmers dot se), Ola Olsson (ola dot olsson at chalmers dot se), Markus Billeter (billeter
at chalmers dot se)

Course webpage: hitp://www.cse.chalmers.se/edu/course/TDA361/

Links:

.

e Links to related previous courses, now obsolete:
o TDA361 Computer Graphics: 2010, 2009, 2008,
°
o

More Links:

OpenGL Reference Manual 3.0

,including release 2.0.
,release 1.3.
, release 3. How to open a window etc.
OpenGL.org
GLSL manual and and good
, paper with optimizatiof tricks for ray tracing.
, paper about grid traversal.
, a free 3D-mode
. A'paper about "game engine design”
open C++ code for loading and rendering 3ds-files.
Converter between 3D formats.

-some 3D models.

How?
e Organizes geometry in some hierarchy

In 2D space Data structure

/ﬁ:\
d B X

In 3D space:

Scene

SN

Subscenel Subscene2

What'’s the point?
An example

e Assume we click on screen, and want to
find which object we clicked on

URCROYL

_ 1) Test the root first
click! 2) Descend recursively as needed
3) Terminate traversal when possible

In general: get O(log n) instead of O(n)

3D example

Scene

4%

Subscenel Subscene2

Bounding Volume Hierarchy (BVH)

e Most common bounding volumes (BVs):

- Sphere
- Boxes (AABB and OBB)

o The BV does not contibute to the rendered

Image -- rather, encloses an object

e [he data structure is a k-ary tree

- Leaves hold geometry

— Internal nodes have at most
k children

— Internal nodes hold BVs that
enclose all geometry in its subtree

w7

U
\d

Some facts about trees

e Height of tree, h, is longest path from root
to leaf

e A balanced tree is full except for possibly
missing leaves at level &

e Height of balanced tree with » nodes:
floor(log,(n))

e Binary tree (k=2) is the simplest

- k=4 and k=8 is quite common for computer
graphics as well

How to create a BVH?
Example: BV=AABB

e Find minimal box, then split along longest axis

. / x is longest
>

Find minimal D / Called TOP-DOWN method

boxes
Works similarly for other BVs
N y

Find minimal
boxes

Split along
longest aX|s

Stopping criteria for Top-Down
creation

e Need to stop recursion some time...
— Either when BV is empty

— Or when only one primitive (e.g. triangle) is
inside BV

— Or when <n primitives is inside BV
— Or when recursion level [has been reached

e Similar critera for BSP trees and octrees

Example

Killzone (2004-
PS2) used kd-
tree / AABB-
tree based
system for the
collision
detection

- L ee— i
J—

Kd-tree = Axis Aligned BSP tree

Binary Space Partitioning (BSP)
Trees

e Two different types:
— Axis-aligned
- Polygon-aligned

e General idea:
- Split space with a plane
— Divide geometry into the space it belongs
— Done recursively

e If traversed in a certain way, we can get the
geometry sorted back-to-front or front-to-back
w.r.t. a camera position

—- Exact for polygon-aligned
- Approximately for axis-aligned

« Split space with a plane
* Divide geometry into the
space it belongs

Axis-Aligned BSP tree (1)

e Can only make a splitting plane along
X,Yy, Or Z

Minimal

0]0)4
——

Split along

plane
———

D)

% E)Q
=/

Split along
plane
———

Split along

plane
—

]
-

>
70

]

o)

-

v

Axis-Aligned BSP tree (2)

B D !
[E] E) (\ la 1b
Plane la ~ llane 1b
—-— Al BTG L2
C o B y

D E
\f 19 K
e Each internal node holds a divider plane
e Leaves hold geometry

e Differences compared to BVH
- BSP tree encloses entire space and provides sorting
- The BV hierarchy can have spatially overlapping nodes(no sort)
- BVHs can use any desirable type of BV

Axis-aligned BSP tree
Rough sorting

e Test the planes, recursively from root, against the point of view. For each
traversed node:
- If node is leaf, draw the node’s geometry

- else
e Continue traversal on the "hither” side with respect to the eye (to sort front to back)
e Then, continue on the farther side.

5;5)1(“\ I
Qcﬁ AllBl1S] 2
o s s N B

1 3

e \Works in the same way for polygon-
aligned BSP trees --- but that gives
exact sorting

Polygon Aligned BSP tree — Quake 2

FPS: 25724
MS: 44

Polygon-aligned BSP tree

e Allows exact sorting

e Very similar to axis-aligned BSP tree

— But the splitting plane are now located in the
planes of the triangles

Drawing Back-to-Front {

recurse on farther side of P;
Draw P;

Recurse on hither side of P;

//Where hither and
farther are with respect
to viewpoint v

class BSPtree:
Polygon P;

Algorithm for BSP trees BSPiree behindP;

BSPtree frontOfP;

Tree CreateBSP(PolygonList L) {
If L empty, return empty tree;

Else:
T->P = arbitrary polygon in L.
T->behindP = CreateBSP(polygons behind P)
T->frontOfP = CreateBSP(polygons in front of P)
Return T.
} Drawing Back-to-Front {

recurse on farther side of P;
Draw P;

Drawing Back-to-Front:
void DrawBSP(Tree t) {
If (t==NULL) return;
If eye front of polygon t->P:
DrawBSP (t->behindP);
Draw P;
DrawBSP (t->frontOfP);
Else:
DrawBSP (t->frontOfP);

Draw P;
DrawBSP (t->behindP);

Recurse on hither side of P;

Octrees (1)

e A bit similar to axis-aligned BSP trees

e Will explain the quadtree, which is the 2D
variant of an octree

=N ;

L7 = &

2 D || O)

e In 3D, each square (or rectangle)
becomes a box, and 8 children

Example of Octree

Recursively split space
in eight parts — equaly
along x,y,z dimension
simultaneously for each
level

Example of octree

LU
b 0o |

4R

Image from Lefebvre et al.

1A

Example of octree e

Octrees (2)

e Expensive to rebuild (BSPs are too)

e (loose octrees, page 656, 3:rd ed.)
— A relaxation to avoid problems

e Octrees can be used to
—- Speed up ray tracing
— Faster picking
— Culling techniques

— Are not used that often in real-time contexts
o-An-exceptionisloose-oectrees

Scene graphs

e BVH is the data structure that is used most often

— Simple to understand
— Simple code

e However, it stores just geometry
- Rendering is more than geometry

e The scene graph is an extended BVH with:
— Lights
- Materials
- Transforms
— And more

— Typically
the logical
structure

Scene Graphs o %

Star
system

Trans| + Trans| +
Rotation rotation

Planet 1 Planet 2

Transl Transl Transl Transl
+ rot + rot + rot + rot

/ .

Scene Graphs

Camera

Group
User ID: 2

Scene Graphs

5 S S

eck leg oot

Speed-Up Techniques

e Spatial data structures are used to speed up
rendering and different queries

e \Why more speed?
e Graphics hardware 2x faster in 6-12 months!

e Wait... then it will be fast enough!
o NOT!

e \We will never be satisfied

— Screen resolution: angular resolution in “gula flacken”
~0.001 degree (eye sweeps scene)
e Apple’s retina screen: 2880 x 1800

— Realism: global illumination
— Geometrical complexity: no upper limit!

What we’ll treat now

e Culling techniques
e Level-of-detail rendering (LODs)

e “To cull” means “to select from group™

»n on

- "Sort out”, "remove”, "cut away”, something
picked out and put aside as inferior.

e In graphics context: do not process data
that will not contribute to the final image

Different culling techniques
(red objects are skipped)

view frustum s detall

backface

‘ occlusion

Backface Culling

e Simple technique to discard polygons
that faces away from the viewer

e Can be used for:
— closed surface (example: sphere)

- or whenever we know that the backfaces never
should be seen (example: walls in a room)

e Two methods (screen space, eye space)

e \Which stages benefits?
e Rasterizer stage

Backface culling (cont’ d)

e Often implemented for you in the API
e OpenGL:
e glCullFace (GL BACK) ;

e glEnable (GL CULL FACE) ;
e How to determine what faces away?

e First, must have consistently oriented polygons, e.g.,
counterclockwise 2

2

front facing 1 back facing

How to cull backfaces

e Two ways in different spaces:

0
front back

screen space

eye

eye Space

back

igelal

View-Frustum Culling

e Bound every “natural” group of primitives
by a simple volume (e.g., sphere, box)

e If a bounding volume (BV) is outside the
view frustum, then the entire contents of
that BV is also outside (not visible)

Can we accelerate view frustum
culling further?

e Do what we always do in graphics...

e Use a hierarchical approach, e.g., a
spatial data structure (BVH, BSP)

e \Which stages benefits?
- Geometry and Rasterizer
— Possibly also bus between CPU and Geometry

Example of Hierarchical View £\
Frustum Culling

i
IR
\ [\

O

cam

Refined view frustum culling:
frustum gets smaller for each door

Portal Culling

Images courtesy of David P. Luebke and Chris Georges

e Average: culled 20-50% of the polys in view
e Speedup: from slightly better to 10 times

Portal culling example

e In a building from above
e Circles are objects to be rendered

Portal Culling Algorithm (1)

e Divide into cells with portals (build graph)

e For each frame:

— Locate cell of viewer and init 2D AABB to whole
screen

— * Render current cell with View Frustum culling
w.r.t. AABB

- Traverse to closest cells (through portals)
— Intersection of AABB & AABB of traversed portal

- Goto *

Portal Culling Algorithm (2)

e \When to exit:

— When the current AABB is empty

- When we do not have enough time to render a
cell (“far away” from the viewer)

e Also: mark rendered objects

Occlusion Culling

e Main idea: Objects that
lies completely
“behind” another set of
objects can be culled

e Hard problem to solve
efficiently

e Has been lots of
research In this area

e OpenGL: “Occlusion
Queries”

Example

@

e Note that “Portal Culling” is type of
occlusion culling

final image

Occlusion culling algorithm

Use some kind of occlusion
representation Op

for each object g do:
if(not Occluded(Or,9))
render(g);
update(Or ,g):
end;
end;

Level-of-Detail Rendering

e Use different levels of detail at different
distances from the viewer

e More triangles closer to the viewer

a4 o~~~

LOD rendering

e Not much visual difference, but a lot faster

e Use area of projection of BV to select
appropriate LOD

Scene graph witP LODs

Car chair
Area?

Far LOD rendering

e \When the object is far away, replace with
a quad of some color

e \When the object is really far away, do
not render it (called: detail culling)!

e Use projected area of BV to determine
when to skip

Misc

e Half Time wrapup slides will be available
in “Schedule” on home page

e There is an Advanced Computer
Graphics Seminar Course in sp 3+4, 7.5p

— One seminar every week
e Discussing advanced CG papers and techniques

- Do a project of your choice.

- Register to the course THE E

Exercise

e Create a function (by writing code on
paper) that performs hierarchical view
frustum culling
— void hierarchicalVFC(node* sceneGraphNode)

What you need to know

e Top-down construction of BVH, AABSP-tree,

e Construction + sorting with AABSP and Polygon-
Aligned BSP

e QOctree/quadtree (skip loose octrees)
e Scene Graphs (briefly)
e Culling — VFC, Portal, Detail, Backface, Occlusion

— Backface culling — screenspace is robust, eyespace non-robust.

e \Whatis LODs

e Describe how to build and use BVHs, AABSP-tree,
Polygon alignhed BSP-tree.

e Describe the octree/quadtree.

THE ENp

BONUS MATERIAL
Occlusion Horizon

e Target: urban scenery
- dense occlusion
— viewer is about 2 meters above
ground
e Algorithm:

— Process scene in front-to-back
using a quad tree

- Maintain a piecewise constant
horizon

— Cull objects against horizon

- Add visible objects’ occluding power
to the horizon

Occlusion testing with occlusion
horizons

e To process tetrahedron (which is behind
grey objects):
— find axis-aligned box of projection
- compare against occlusion horizon

culled

Update horizon

e \When an object is considered visible:

e Add its “occluding power” to the
occlusion representation

Example:

e Read about the details in paper on website
(compulsory material!)

