
1

Database Usage
(and Construction)

SQL Queries and Relational Algebra
Views

Lecture 6

CREATE TABLE Rooms(
name VARCHAR(10),
capacity INTEGER CHECK(capacity > 0) NOT NULL,
PRIMARY KEY(name)

);

Which SQL definition for a room is most correct?

CREATE TABLE Rooms(
name VARCHAR(10),
capacity INTEGER,
PRIMARY KEY(name)

);

CREATE TABLE Rooms(
name VARCHAR(10),
capacity INTEGER NOT NULL,
PRIMARY KEY(name)

);

CREATE TABLE Rooms(
name VARCHAR(10),
capacity INTEGER CHECK(capacity > 0),
PRIMARY KEY(name)

);

(A)

(C)

(B)

(D)

Summary so far

• SQL is based on relational algebra.
– Operations over relations

• Operations for:
– Selection of rows (σ)
– Projection of columns (π)
– Combining tables

• Cartesian product (x)
• Join, natural join (⋈C, ⋈)

SELECT-FROM-WHERE

• Basic structure of an SQL query:
SELECT attributes
FROM tables
WHERE tests over rows

SELECT X
FROM T
WHERE C

πX(σC(T))

Example:

SELECT code, name, period
FROM Courses, GivenCourses
WHERE teacher = ’Mickey’

AND code = course;

course per teacher
TDA357 3 Mickey

TDA357 2 Tweety

TIN090 1 Pluto

code name
TDA357 Databases
TIN090 Algorithms

Courses
GivenCourses

πcode,name,period
(σteacher=’Mickey’ & code = course
(Courses x GivenCourses))

Example:
SELECT code, name, period

FROM Courses, GivenCourses
WHERE teacher = ’Mickey’

AND code = course;

code name course per teacher
TDA357 Databases TDA357 3 Mickey

TDA357 Databases TDA357 2 Tweety

TDA357 Databases TIN090 1 Pluto

TIN090 Algorithms TDA357 3 Mickey

TIN090 Algorithms TDA357 2 Tweety

TIN090 Algorithms TIN090 1 Pluto

πcode,name,period(σteacher=’Mickey’ & code = course(Courses x GivenCourses))

2

Example:
SELECT code, name, period
FROM Courses, GivenCourses

WHERE teacher = ’Mickey’
AND code = course;

code name course per Teacher
TDA357 Databases TDA357 3 Mickey

TDA357 Databases TDA357 2 Tweety

TDA357 Databases TIN090 1 Pluto

TIN090 Algorithms TDA357 3 Mickey

TIN090 Algorithms TDA357 2 Tweety

TIN090 Algorithms TIN090 1 Pluto

πcode,name,period(σteacher=’Mickey’ & code = course(Courses x GivenCourses))

code name course per teacher
TDA357 Databases TDA357 3 Mickey

Example:

SELECT code, name, period
FROM Courses, GivenCourses
WHERE teacher = ’Mickey’

AND code = course;

πcode,name,period(σteacher=’Mickey’ & code = course(Courses x GivenCourses))

code name course per teacher
TDA357 Databases TDA357 3 Mickey

code name per
TDA357 Databases 3

Quiz!

What does the following relational algebra
expression compute?

σteacher=’Mickey’ & code = course
(πcode,name,period
(Courses x GivenCourses))

The expression is invalid, since the result after the
projection will not have attributes teacher and course
to test.

More complex expressions
• So far we have only examples of the same

simple structure:

• We can of course combine the operands and
operators of relational algebra in (almost) any
way imaginable.

πX(σC(T))

σC(R3 ⋈D πX(R1 x R2))
SELECT *
FROM R3 JOIN (SELECT X FROM R1,R2) ON D
WHERE C

Subqueries
• Subqueries is a term referring to a query used

inside another query:

• Beware the natural join!!
• ”List all teachers who have lectures on Mondays in period 3”
• SQL is a language where any query can be written in lots of

different ways…

SELECT teacher
FROM GivenCourses NATURAL JOIN

(SELECT course, period
FROM Lectures
WHERE weekday = ’Mon’)

WHERE period = 3;

course period room weekday hour
TDA357 3 HC1 Mon 13

TDA357 3 HC1 Thu 10

TDA357 2 VR Tue 8

TDA357 2 HC1 Thu 13

TIN090 1 HA4 Mon 8

TIN090 1 HC3 Thu 13

SELECT course, period
FROM Lectures
WHERE weekday = ’Mon’

3

SELECT course, period
FROM Lectures
WHERE weekday = ’Mon’

course period room weekday hour
TDA357 3 HC1 Mon 13

TIN090 1 HA4 Mon 8

course period
TDA357 3

TIN090 1

course period teacher #students
TDA357 3 Mickey 130

TDA357 2 Tweety 135

TIN090 1 Pluto 95

SELECT teacher
FROM GivenCourses NATURAL JOIN

(SELECT course, period
FROM Lectures
WHERE weekday = ’Mon’)

WHERE period = 3;

course period teacher #students
TDA357 3 Mickey 130

TIN090 1 Pluto 95

SELECT teacher
FROM GivenCourses NATURAL JOIN

(SELECT course, period
FROM Lectures
WHERE weekday = ’Mon’)

WHERE period = 3;

Result

teacher
Mickey

Renaming attributes

• Sometimes we want to give new names to
attributes in the result of a query.
– To better understand what the result models
– In some cases, to simplify queries

SELECT *
FROM Courses NATURAL JOIN

(SELECT course AS code, period, teacher
FROM GivenCourses);

Renaming relations

• Name the result of a subquery to be able
to refer to the attributes in it.

• Alias existing relations (tables) to make
referring to it simpler, or to disambiguate.
SELECT L.course, weekday, hour, room
FROM Lectures L, GivenCourses G, Rooms
WHERE L.course = G.course

AND L.period = G.period
AND room = name
AND nrSeats < nrStudents;

List all lectures that are scheduled in rooms with too
few seats.What does this query mean?

4

Renaming relations

• Name the result of a subquery to be able
to refer to the attributes in it.

• Alias existing relations (tables) to make
referring to it simpler, or to disambiguate.
SELECT L.course, weekday, hour, room
FROM Lectures L, GivenCourses G, Rooms
WHERE L.course = G.course

AND L.period = G.period
AND room = name
AND nrSeats < nrStudents;

List all lectures that are scheduled in rooms with too
few seats.

Renaming in Relational Algebra
• Renaming = Given a relation, give a new name

to it, and (possibly) to its attributes

– Rename R to A, and the attributes of R to the names
specified by X (must match the number of attributes).

– Leaving out X means attribute names stay the same.
– Renaming the relation is only necessary for

subqueries.
– ρ = rho = greek letter r = rename

ρA(X)(R)

Sequencing
• Easier to handle subqueries separately when

queries become complicated.
– Example: πX(R1 ⋈C R2) could be written as

– In SQL:

R3 := R1 x R2
R4 := σC(R3)
R := πX(R4)

WITH
R3 AS (SELECT * FROM R1, R2),
R4 AS (SELECT * FROM R3 WHERE C)

SELECT X FROM R4;

• Example:
WITH DBLectures AS

(SELECT room, hour, weekday
FROM Lectures
WHERE course = ’TDA357’

AND period = 3)
SELECT weekday
FROM DBLectures
WHERE room = ’HC1’;

Lists the days when the Databases course has
lectures in room HC1 during period 3.What does this query mean?

• Example:
WITH DBLectures AS

(SELECT room, hour, weekday
FROM Lectures
WHERE course = ’TDA357’

AND period = 3)
SELECT weekday
FROM DBLectures
WHERE room = ’HC1’;

Lists the days when the Databases course has
lectures in room HC1 during period 3.

Creating views
• A view is a ”virtual table”, or ”persistent

query” – a relation defined in the database
using data contained in other tables.

• For purposes of querying, a view works
just like a table.

• Depending on your DBMS, a view can be
read-only, or allow modifications to the
underlying table.

CREATE VIEW viewname AS query

5

Example:
CREATE VIEW DBLectures AS
SELECT room, hour, weekday
FROM Lectures
WHERE course = ’TDA357’

AND period = 3;

SELECT weekday
FROM DBLectures
WHERE room = ’HC1’; BREAK!

Air Traffic Exercise

• Write an SQL query that shows the names
of all cities together with the number of
flights that depart/arrive from/to them

The WHERE clause

• Specify conditions over rows.
• Can involve

– constants
– attributes in the row
– simple value functions (e.g. ABS, UPPER)
– subqueries

• Lots of nice tests to make…

Testing for membership

• Test whether or not a tuple is a member of
some relation.
tuple [NOT] IN subquery {or literal set}

SELECT course
FROM GivenCourses
WHERE period IN (1,4);

List all courses that
take place in the first or
fourth periods.

Quiz!

List all courses given by a teacher who also
gives the Databases course (TDA357).
(You must use IN…)

SELECT course
FROM GivenCourses
WHERE teacher IN

(SELECT teacher
FROM GivenCourses
WHERE course = ’TDA357’);

6

Testing for existance

• Test whether or not a relation is empty.

[NOT] EXISTS subquery

SELECT code
FROM Courses
WHERE EXISTS

(SELECT *
FROM Lectures
WHERE course = code);

e.g. List all courses that have lectures.

Note that code is in scope here since it is an attribute in the row being
tested in the outer ”WHERE” clause. This is called a correlated query.

Quiz!

List all courses that are not given in the third
period. (You must use EXISTS…)

SELECT code
FROM Courses
WHERE NOT EXISTS

(SELECT *
FROM GivenCourses
WHERE course = code

AND period = 3);

Ordinary comparisons

• Normal comparison operators like =, <, !=,
but also the special BETWEEN.

– Same thing as

value1 BETWEEN value2 AND value3

SELECT course
FROM GivenCourses
WHERE period BETWEEN 2 AND 3;

List all courses that
take place in the
second or third periods.

value2 <= value1 AND value1 <= value3

Comparisons with many rows

• Two operators that let us compare with all
the values in a relation at the same time.
tuple op ANY subquery {or literal set}
tuple op ALL subquery {or literal set}

SELECT course
FROM GivenCourses
WHERE period = ANY (ARRAY[1,4]);

List all courses that
take place in the first or
fourth periods.

Quiz!

List the course(s) with the fewest number of
students (in any period). (You must use
ANY or ALL…)

SELECT course
FROM GivenCourses
WHERE nrStudents <= ALL

(SELECT nrStudents
FROM GivenCourses);

String comparisons

• Normal comparison operators like < use
lexicographical order.
– ’foo’ < ’fool’ < ’foul’

• Searching for patterns in strings:

– Two special pattern characters:
• _ (underscore) matches any one character.
• % matches any (possibly empty) sequence of

characters.

string LIKE pattern

7

Quiz!

List all courses that have anything to do with
databases (i.e. have the word Database in
their name).

SELECT *
FROM Courses
WHERE name LIKE ’%Database%’;

The NULL symbol

• Special symbol NULL means either
– we have no value, or
– we don’t know the value

• Use with care!
– Comparisons and other operations won’t

work.
– May take up unnecessary space.

Comparing values with NULL

• The logic of SQL is a three-valued logic –
TRUE, FALSE and UNKNOWN.

• Comparing any value with NULL results in
UNKNOWN.

• A row is selected if all the conditions in the
WHERE clause are TRUE for that row, i.e.
not FALSE nor UNKNOWN.

Three-valued logic

• Rules for logic with unknowns:
– true AND unknown = unknown
– false AND unknown = false

– true OR unknown = true
– false OR unknown = unknown

– unknown AND/OR unknown = unknown

Unintuitive result
SELECT *
FROM Rooms
WHERE nrSeats > 10

OR nrSeats <= 10;

name nrSeats
VR NULL

Rooms

We don’t know
the value

UNKNOWN

UNKNOWN

UNKNOWN

Don’t expect the ”usual” results

• Laws of three-valued logic are not the
same as those for two-valued logic.

• Some laws hold, like commutativity of
AND and OR.

• Others do not:
p OR NOT p = true

8

(A) πname(σcapacity>=100(Rooms))

(B) σname(πcapacity>=100(Rooms))

(C) σname(Rooms)

(D) πcapacity>=100(Rooms)

Select name of all rooms with
capacity of 100 or more

Next time, Lecture 7

More Relational Algebra and SQL

