Database Usage
(and)

SQL Queries and Relational Algebra

Views

Which SQL definition for a room is most correct?

CREATE TABLE Rooms (CREATE TABLE Rooms (
name VARCHAR(10), name VARCHAR (10),
(A) capacity INTEGER, (B) capacity INTEGER NOT NULL,

PRIMARY KEY (name)

PRIMARY KEY (name)
)i ;

)i

CREATE TABLE Rooms (
name VARCHAR(10),

(C) capacity INTEGER CHECK (capacity > 0) NOT NULL,

PRIMARY KEY (name)

)i

CREATE TABLE Rooms (
name VARCHAR(10),
(D) capacity INTEGER CHECK(capacity > 0),
PRIMARY KEY (name)
)i

Summary so far

« SQL is based on relational algebra.
— Operations over relations

» Operations for:
— Selection of rows (o)

SELECT-FROM-WHERE

* Basic structure of an SQL query:

SELECT attributes
FROM tables
WHERE tests over rows

— Projection of columns (11) SELECT X
. FROM T
— Combining tables WHERE G < y(ac(T))
* Cartesian product (x)
+ Join, natural join (Mg, M)
Example: Example:

SELECT code, name, period

FROM Courses, GivenCourses

WHERE teacher = ’'Mickey’
AND code = course;

GivenCourses

Courses course | per teacher
code name TDA357 3 Mickey
TDA357 | Databases TDA357 2 Tweety
TINO90 | Algorithms TINO9O 1 Pluto
1T,

code,name,period

(Oteacher:’Mickey’ & code = course
(Courses x GivenCourses))

FROM Courses, GivenCourses

code name course | per teacher
TDA357 | Databases | TDA357 3 Mickey
TDA357 | Databases | TDA357 2 Tweety
TDA357 | Databases | TINO9O 1 Pluto
TINO9O | Algorithms | TDA357 3 Mickey
TINO90 | Algorithms | TDA357 2 Tweety
TINO90 | Algorithms | TINO9O 1 Pluto

(Courses x GivenCourses)

Example:

FROM Courses, GivenCourses
WHERE teacher = ’Mickey’
AND code = course;

code name course | per Teacher
TDA357 | Databases | TDA357 3 Mickey
TDA357 | D TDA3D7 2 Tweety

TDA357 | D code name course | per teacher

TINO9O | Algorithms TDA357 | Databases | TDA357 3 Mickey

TINO90 | Algorithms | TDA357 2 Tweety
TINO90 | Algorithms | TINO90 1 Pluto

(Uteacher='Mic:key' & code = course(co'-"'Ses X GivenCourses))

Example:

SELECT code, name, period
FROM Courses, GivenCourses
WHERE teacher = ’Mickey’

AND code = course;

code name course | per teacher
TDA357 | Databases [TDA357 3 Mickey

code name | per
TDA357 | Databases |3

Troode,name,period(oteacher='Mickey' & code = course(cou"Ses X GivenCourses))

Quiz!

What does the following relational algebra
expression compute?

c’teacher=’Mickey’ & code = course

(Trcode,name,period
(Courses x GivenCourses))

The expression is invalid, since the result after the
projection will not have attributes teacher and course
to test.

More complex expressions

» So far we have only examples of the same

simple structure:
x(9¢(T))

» We can of course combine the operands and
operators of relational algebra in (almost) any
way imaginable.

‘ 0c(Rs Mp k(R4 X Ry)) ‘

SELECT *
FROM R; JOIN (SELECT X FROM R;,R;) ON D
WHERE C

Subqueries

« Subqueries is a term referring to a query used
inside another query:

SELECT teacher

FROM GivenCourses NATURAL JOIN
(SELECT course, period
FROM Lectures
WHERE weekday = ’'Mon’)

WHERE period = 3;

« Beware the natural join!!

« ’List all teachers who have lectures on Mondays in period 3”

« SQL is a language where any query can be written in lots of
different ways...

SELECT course, period
FROM Lectures

WHERE weekday = ’'Mon’
course | period room weekday | hour

TDA357 3 HC1 Mon 13
TDA357 3 HC1 Thu 10
TDA357 2 VR Tue 8
TDA357 2 HC1 Thu 13
TINO9O 1 HA4 Mon 8
TINO9O 1 HC3 Thu 13

SELECT course, period
FROM Lectures
WHERE weekday = ’Mon’

course | period room weekday | hour
TDA357 3 HC1 Mon 13
TINO9O 1 HA4 Mon 8

SELECT teacher

FROM GivenCourses NATURAL JOIN
(SELECT course, period
FROM Lectures
WHERE weekday = ’'Mon’)

WHERE period = 3;

course | period
TDA357 |3
TINO9O 1
course period teacher #students
TDA357 3 Mickey 130
TDA357 2 Tweety 135
TINO9O 1 Pluto 95

SELECT teacher

FROM GivenCourses NATURAL JOIN
(SELECT course, period
FROM Lectures
WHERE weekday = ’'Mon’)

WHERE period = 3;

course period teacher #students
TDA357 3 Mickey 130
TINO9O 1 Pluto 95

Result

teacher

Mickey

Renaming attributes

+ Sometimes we want to give new names to
attributes in the result of a query.

— To better understand what the result models
—In some cases, to simplify queries

SELECT *

FROM Courses NATURAL JOIN
(SELECT course AS code, period, teacher
FROM GivenCourses) ;

Renaming relations

* Name the result of a subquery to be able
to refer to the attributes in it.

+ Alias existing relations (tables) to make
referring to it simpler, or to disambiguate.

SELECT L.course, weekday, hour, room
FROM Lectures L, GivenCourses G, Rooms
WHERE L.course = G.course

AND L.period = G.period

AND room = name

AND nrSeats < nrStudents;

What does this query mean?

Renaming relations

+ Name the result of a subquery to be able
to refer to the attributes in it.

« Alias existing relations (tables) to make

referring to it simpler, or to disambiguate.

SELECT L.course, weekday, hour, room
FROM Lectures L, GivenCourses G, Rooms
WHERE L.course = G.course

AND L.period = G.period

AND room = name

AND nrSeats < nrStudents;

List all lectures that are scheduled in rooms with too
few seats.

Renaming in Relational Algebra

* Renaming = Given a relation, give a new name
to it, and (possibly) to its attributes

Pax(R)

— Rename R to A, and the attributes of R to the names
specified by X (must match the number of attributes).
— Leaving out X means attribute names stay the same.

— Renaming the relation is only necessary for
subqueries.

— p =rho = greek letter r = rename

Sequencing

+ Easier to handle subqueries separately when
queries become complicated.
— Example: (R, Xc R,) could be written as

R; := R; XR,

R, := O.(Rj3)

R = Ty (R,)

- In SQL: x4
WITH

R, AS (SELECT * FROM R,, R,),
R, AS (SELECT * FROM R, WHERE C)
SELECT X FROM R,;

« Example:

WITH DBLectures AS
(SELECT room, hour, weekday
FROM Lectures
WHERE course = ’'TDA357’
AND period = 3)
SELECT weekday
FROM DBLectures
WHERE room = 'HC1l’;

What does this query mean?

* Example:

WITH DBLectures AS
(SELECT room, hour, weekday
FROM Lectures
WHERE course = ’'TDA357’
AND period = 3)
SELECT weekday
FROM DBLectures
WHERE room = 'HCl1l’';

Lists the days when the Databases course has
lectures in room HC1 during period 3.

Creating views

» A view is a "virtual table”, or "persistent
query” — a relation defined in the database
using data contained in other tables.

CREATE VIEW viewname AS query

 For purposes of querying, a view works
just like a table.

» Depending on your DBMS, a view can be
read-only, or allow modifications to the
underlying table.

Example:

CREATE VIEW DBLectures AS
SELECT room, hour, weekday
FROM Lectures
WHERE course = ’'TDA357’

AND period = 3;

SELECT weekday
FROM DBLectures
WHERE room = ’'HC1l’;

BREAK!

Air Traffic Exercise

» Write an SQL query that shows the names
of all cities together with the number of
flights that depart/arrive from/to them

The WHERE clause

 Specify conditions over rows.
» Can involve

— constants

— attributes in the row

— simple value functions (e.g. ABS, UPPER)
— subqueries

* Lots of nice tests to make...

Testing for membership

» Test whether or not a tuple is a member of
some relation.

‘tuple [NOT] IN subquery {or literal set}‘

SELECT course List all courses that
FROM GivenCourses take place in the first or
WHERE period IN (1,4); fourth periods.

Quiz!

List all courses given by a teacher who also
gives the Databases course (TDA357).
(You must use IN...)

SELECT course
FROM GivenCourses
WHERE teacher IN
(SELECT teacher
FROM GivenCourses
WHERE course = 'TDA357');

Testing for existance

» Test whether or not a relation is empty.

| [NOT] EXISTS subquery |

e.g. List all courses that have lectures.
SELECT code
FROM Courses
WHERE EXISTS
(SELECT *
FROM Lectures
WHERE course = code);

Note that code is in scope here since it is an attribute in the row being
tested in the outer "WHERE” clause. This is called a correlated query.

Quiz!

List all courses that are not given in the third
period. (You must use EXISTS...)

SELECT code
FROM Courses
WHERE NOT EXISTS
(SELECT *
FROM GivenCourses
WHERE course = code
AND period = 3);

Ordinary comparisons

* Normal comparison operators like =, <, I=
but also the special BETWEEN.

‘Valuel BETWEEN value2 AND valueB‘

List all courses that
take place in the

SELECT course
FROM GivenCourses
WHERE period BETWEEN 2 AND 3;

— Same thing as

‘valuez <= valuel AND valuel <= value3

second or third periods.

Comparisons with many rows

» Two operators that let us compare with all
the values in a relation at the same time.

tuple op ANY subquery {or literal set}
tuple op ALL subquery {or literal set}

SELECT course List all courses thgt
take place in the first or

FROM GivenCourses fourth periods.
WHERE period = ANY (ARRAY[1,4]);

Quiz!

List the course(s) with the fewest number of

students (in any period). (You must use
ANY or ALL...)

SELECT course

FROM GivenCourses

WHERE nrStudents <= ALL
(SELECT nrStudents
FROM GivenCourses) ;

String comparisons

* Normal comparison operators like < use
lexicographical order.
—foo’ < ’fool’ < *foul’
» Searching for patterns in strings:
‘string LIKE pattern‘

— Two special pattern characters:
* _ (underscore) matches any one character.

* % matches any (possibly empty) sequence of
characters.

Quiz!

List all courses that have anything to do with
databases (i.e. have the word Database in
their name).

SELECT *
FROM Courses
WHERE name LIKE ’'%Database%’ ;

The NULL symbol

+ Special symbol NULL means either
—we have no value, or
— we don’t know the value

» Use with care!

— Comparisons and other operations won’t
work.

— May take up unnecessary space.

Comparing values with NULL

* The logic of SQL is a three-valued logic —
TRUE, FALSE and UNKNOWN.

» Comparing any value with NULL results in
UNKNOWN.

* A row is selected if all the conditions in the
WHERE clause are TRUE for that row, i.e.
not FALSE nor UNKNOWN.

Three-valued logic
* Rules for logic with unknowns:
— true AND unknown = unknown

— false AND unknown = false

—true OR unknown = true
— false OR unknown = unknown

— unknown AND/OR unknown = unknown

Unintuitive result

FROM Rooms
WHERE nrSeats > 10

name | nrSeats
VR NULL

We don’t know
the value

Don’t expect the "usual” results

» Laws of three-valued logic are not the
same as those for two-valued logic.

+ Some laws hold, like commutativity of
AND and OR.

» Others do not:
p OR NOT p = true

Select name of all rooms with
capacity of 100 or more

=

name(ocapacity>:1OO(RoomS))

name(ncapacity>=1 00(R00m8))

name(RoomS)

CRCHCEFS
a Qa

=

capacity>=1 OO(RoomS)

Next time, Lecture 7

More Relational Algebra and SQL

