
1

Database Construction
and Usage

SQL DDL and DML
Relational Algebra

Lecture 5

Announcement

• Attributes on ER relationships are allowed
– But boolean “flag” attributes are discouraged

• Sign up to the Google Group for updates!
• https://groups.google.com/forum/#!forum/tda357-ht2016

• Fill in the doodles
– No-one signed up == no TA attending
– More rooms are added if needed

Example

Room A Room B
Alice

Bob

Charlie

3 0

Alice, Bob and Charlie signed up for room A
No-one signed up for room B

In this case, there will be NO
teaching assistant in room B!!

Course Objectives

Design

Construction

Interfacing
Usage

Connecting to PostgreSQL
• Chalmers postgresql server (check Fire for your

credentials):
psql -h ate.ita.chalmers.se -U <username> <dbname>

• Local postgresql server:
psql <dbname>

• Semicolon and postgres prompt:

steven=> select 1+1
steven-> ;

Lines should end with ‘;’, otherwise
statements are continued on the next
line. Note the prompt change!

Case convention

• SQL is completely case insensitive.
Upper-case or Lower-case makes no
difference. We will use case in the
following way:
– UPPERCASE marks keywords of the SQL

language.
– lowercase marks the name of an attribute.
– Capitalized marks the name of a table.

2

SQL Data Definition Language

Working example

Personssn

name

Teaches

Coursecode

name

period

studentcount

Of

GivenCourse

>= 0

1,2,3,4

Person(ssn, name)
Course(code, name)
GivenCourse(code, period, studentcount, teacher)

code -> Course.code
teacher -> Person.ssn

Creating and dropping tables
• Relations become tables, attributes become

columns.
CREATE TABLE Tablename (

<list of table elements>
);

DROP TABLE Tablename;

\d+ Tablename;

• Get all info about a created table:

• Remove a created table:
PostgreSQL specific!

Table declaration elements

• The basic elements are pairs consisting of
a column name and a type.

• Most common SQL types:
– INT or INTEGER (synonyms)
– REAL or FLOAT (synonyms)
– CHAR(n) = fixed-size string of size n.
– VARCHAR(n) = variable-size string of up to

size n.
– TEXT = string of unrestricted length

Example
Example:

CREATE TABLE Courses (
code CHAR(6),
name TEXT NOT NULL

);

code name
Created the table courses:

NULL is allowed
by default!

Declaring keys
• An attribute or a list of attributes can be

declared PRIMARY KEY or UNIQUE
– PRIMARY KEY: (At most) One per table,

never NULL. Efficient lookups in all DBMS.
– UNIQUE: Any number per table, can be

NULL. Could give efficient lookups (may vary
in different DBMS).

• Both declarations state that all other
attributes of the table are functionally
determined by the given attribute(s).

3

Example

CREATE TABLE Courses(
code CHAR(6),
name TEXT NOT NULL,
PRIMARY KEY (code)

);

Foreign keys

• Referential constraints are handled with
references, called foreign keys.
– FOREIGN KEY attribute

REFERENCES table(attribute).

FOREIGN KEY course
REFERENCES Courses(code)

Foreign keys
• General:
FOREIGN KEY course REFERENCES Courses(code)

• If course is Primary Key in Courses:
FOREIGN KEY course

REFERENCES Courses

• Give a name to the foreign key:
CONSTRAINT ExistsCourse
FOREIGN KEY course
REFERENCES Courses

Example
CREATE TABLE GivenCourses (

course CHAR(6),
period INT,
numStudents INT,
teacher INT REFERENCES People(ssn) NOT
NULL,
PRIMARY KEY (course, period),
FOREIGN KEY (course) REFERENCES Courses(code)

);

Example
CREATE TABLE GivenCourses (

course CHAR(6) REFERENCES Courses,
period INT,
numStudents INT,
teacher INT REFERENCES People(ssn) NOT
NULL,
PRIMARY KEY (course, period)

);

Value constraints

• Use CHECK to insert simple value
constraints.
– CHECK (some test on attributes)

CHECK (period IN (1,2,3,4))

4

Example
CREATE TABLE GivenCourses (

course CHAR(6) REFERENCES Courses,
period INT CHECK (period IN (1,2,3,4)),
numStudents INT,
teacher INT REFERENCES People(ssn) NOT
NULL,
PRIMARY KEY (course, period)

);

Example
CREATE TABLE GivenCourses (

course CHAR(6) REFERENCES Courses,
period INT,
numStudents INT,
teacher INT REFERENCES People(ssn) NOT
NULL,
PRIMARY KEY (course, period),
CONSTRAINT ValidPeriod CHECK (period in (1,2,3,4))

);

SQL Data Manipulation Language:
Modifications

Inserting data
INSERT INTO tablename
VALUES (values for attributes);

INSERT INTO Courses
VALUES (’TDA357’, ’Databases’);

code name
TDA357 Databases

Example
• Legal:

– INSERT INTO GivenCourses
VALUES (’TDA357’,2,199,1);

• Not Legal:
– INSERT INTO GivenCourses
VALUES (’TDA357’,7,199,1);

• ERROR: new row for relation
"givencourses" violates check constraint
"givencourses_period_check"DETAIL:
Failing row contains (TDA357, 7, 199, 1).

Deletions
DELETE FROM tablename
WHERE test over rows;

DELETE FROM Courses
WHERE code = ’TDA357’;

5

Updates
UPDATE tablename
SET attribute = ...
WHERE test over rows

UPDATE GivenCourses
SET teacher = ’Graham Kemp’
WHERE course = ’TDA357’
AND period = 2;

Queries:
SQL and Relational Algebra

Querying

• To query the database means asking it for
information.
– ”List all courses that have lectures in room

VR”
• Unlike a modification, a query leaves the

database unchanged.

SQL

• SQL = Structured Query Language
– The querying parts are really the core of SQL.

The DDL and DML parts are secondary.
• Very-high-level language.

– Specify what information you want, not how to
get that information (like you would in e.g.
Java).

• Based on Relational Algebra

”Algebra”

• An algebra is a mathematical system
consisting of:
– Operands: variables or values to operate on.
– Operators: symbols denoting functions that

operate on variables and values.

Relational Algebra

• An algebra whose operands are relations
(or variables representing relations).

• Operators representing the most common
operations on relations.
– Selecting rows
– Projecting columns
– Composing (joining) relations

6

Selection

• Selection = Given a relation (table),
choose what tuples (rows) to include in the
result.

– Select the rows from relation T that satisfy
condition C.

– σ = sigma = greek letter s = selection

σC(T) SELECT * FROM T WHERE C;

Example:

GivenCourses =

SELECT *
FROM GivenCourses
WHERE course = ’TDA357’;

Result =

course per teacher
TDA357 3 Niklas Broberg

TDA357 2 Graham Kemp

TIN090 1 Devdatt Dubhashi

course per teacher
TDA357 3 Niklas Broberg

TDA357 2 Graham Kemp
What?

Example:

GivenCourses =

SELECT *
FROM GivenCourses
WHERE course = ’TDA357’;

Result =

course per teacher
TDA357 3 Niklas Broberg

TDA357 2 Graham Kemp

TIN090 1 Devdatt Dubhashi

course per teacher
TDA357 3 Niklas Broberg

TDA357 2 Graham Kemp

Projection

• Given a relation (table), choose what
attributes (columns) to include in the
result.

– Select the rows from table T that satisfy
condition C, and project columns X of the
result.

– π = pi = greek letter p = projection

πX(σC(T)) SELECT X FROM T WHERE C;

Example:

GivenCourses =

SELECT course, teacher
FROM GivenCourses
WHERE course = ’TDA357’;

Result =

course per teacher
TDA357 3 Niklas Broberg

TDA357 2 Graham Kemp

TIN090 1 Devdatt Dubhashi

course teacher
TDA357 Niklas Broberg

TDA357 Graham Kemp
What?

Example:

GivenCourses =

SELECT course, teacher
FROM GivenCourses
WHERE course = ’TDA357’;

Result =

course per teacher
TDA357 3 Niklas Broberg

TDA357 2 Graham Kemp

TIN090 1 Devdatt Dubhashi

course teacher
TDA357 Niklas Broberg

TDA357 Graham Kemp

7

The confusing SELECT
Example:

GivenCourses =

SELECT course, teacher
FROM GivenCourses;

Result =

course per teacher
TDA357 3 Niklas Broberg

TDA357 2 Graham Kemp

TIN090 1 Devdatt Dubhashi

course teacher
TDA357 Niklas Broberg

TDA357 Graham Kemp

TIN090 Devdatt Dubhashi

What?

The confusing SELECT
Example:

GivenCourses =

SELECT course, teacher
FROM GivenCourses;

Result =

course per teacher
TDA357 3 Niklas Broberg

TDA357 2 Graham Kemp

TIN090 1 Devdatt Dubhashi

course teacher
TDA357 Niklas Broberg

TDA357 Graham Kemp

TIN090 Devdatt Dubhashi

Quiz: SELECT is a projection??

Mystery revealed!
SELECT course, teacher
FROM GivenCourses;

• In general, the SELECT clause could be seen as
corresponding to projection, and the WHERE
clause to selection (don’t confuse the naming
though).

πcode,teacher(σ(GivenCourses))
= πcode,teacher(GivenCourses)

Quiz!

• What does the following expression
compute?

SELECT *
FROM Courses, GivenCourses
WHERE teacher = ’Niklas Broberg’;

course per teacher
TDA357 3 Niklas Broberg

TDA357 2 Graham Kemp

TIN090 1 Devdatt Dubhashi

code name
TDA357 Databases
TIN090 Algorithms

Courses
GivenCourses

FROM Courses, GivenCourses

code name course per teacher
TDA357 Databases TDA357 3 Niklas Broberg

TDA357 Databases TDA357 2 Graham Kemp

TDA357 Databases TIN090 1 Devdatt
Dubhashi

TIN090 Algorithms TDA357 3 Niklas Broberg

TIN090 Algorithms TDA357 2 Graham Kemp

TIN090 Algorithms TIN090 1 Devdatt
Dubhashi

WHERE teacher = ’Niklas
Broberg’

code name course per teacher
TDA357 Databases TDA357 3 Niklas Broberg

TDA357 Databases TDA357 2 Graham Kemp

TDA357 Databases TIN090 1 Devdatt
Dubhashi

TIN090 Algorithms TDA357 3 Niklas Broberg

TIN090 Algorithms TDA357 2 Graham Kemp

TIN090 Algorithms TIN090 1 Devdatt
Dubhashi

8

Answer:

The result is all rows from Courses combined in all
possible ways with all rows from GivenCourses, and
then keep only those where the teacher attribute is
Niklas Broberg.

code name course per teacher
TDA357 Databases TDA357 3 Niklas Broberg

TIN090 Algorithms TDA357 3 Niklas Broberg

SELECT *
FROM Courses, GivenCourses
WHERE teacher = ’Niklas Broberg’;

Cartesian Products

• The cartesian product of relations R1 and
R2 is all possible combinations of rows
from R1 and R2.
– Written R1 x R2

– Also called cross-product, or just product
SELECT *
FROM Courses, GivenCourses
WHERE teacher = ’Niklas Broberg’;

σteacher = ’Niklas Broberg’(Courses x GivenCourses)

Quiz!
List all courses, with names, that Niklas Broberg is

responsible for.
Courses(code,name)
GivenCourses(course,per,teacher)

course -> Courses.code

SELECT *
FROM Courses, GivenCourses
WHERE teacher = ’Niklas Broberg’

AND code = course;
code name course per teacher

TDA357 Databases TDA357 3 Niklas Broberg

code = course

code name course per teacher
TDA357 Databases TDA357 3 Niklas Broberg

TDA357 Databases TDA357 2 Graham Kemp

TDA357 Databases TIN090 1 Devdatt
Dubhashi

TIN090 Algorithms TDA357 3 Niklas Broberg

TIN090 Algorithms TDA357 2 Graham Kemp

TIN090 Algorithms TIN090 1 Devdatt
Dubhashi

Not equal

Joining relations
• Very often we want to join two relations on the

value of some attributes.
– Typically we join according to some reference, as in:

• Special operator ⋈C for joining relations.

SELECT *
FROM Courses, GivenCourses
WHERE code = course;

R1 ⋈C R2 = σC(R1 x R2)
SELECT *
FROM R1 JOIN R2 ON C;

Example

SELECT *
FROM Courses JOIN GivenCourses

ON code = course;

course per teacher
TDA357 3 Niklas Broberg

TDA357 2 Graham Kemp

TIN090 1 Devdatt Dubhashi

code name
TDA357 Databases
TIN090 Algorithms

Courses
GivenCourses

code name course per teacher
TDA357 Databases TDA357 3 Niklas Broberg

TDA357 Databases TDA357 2 Graham Kemp

TIN090 Algorithms TIN090 1 Devdatt Dubhashi

9

Natural join

• ”Magic” version of join.
– Join two relations on the condition that all

attributes in the two that share the same
name should be equal.

– Remove all duplicate columns
– Written R1 ⋈ R2 (like join with no condition)

Example

SELECT *
FROM Courses NATURAL JOIN GivenCourses;

code per teacher
TDA357 3 Niklas Broberg

TDA357 2 Graham Kemp

TIN090 1 Devdatt Dubhashi

code name
TDA357 Databases
TIN090 Algorithms

Courses
GivenCourses

code name per teacher
TDA357 Databases 3 Niklas Broberg

TDA357 Databases 2 Graham Kemp

TIN090 Algorithms 1 Devdatt Dubhashi

Sets or Bags?
• Relational algebra formally applies to sets

of tuples.
• SQL, the most important query language

for relational databases is actually a bag
language.
– SQL will eliminate duplicates, but usually only

if you ask it to do so explicitly.
• Some operations, like projection, are much

more efficient on bags than sets.

Sets or Bags?
A B
1 2
5 6
1 3

R(A,B)

SELECT A
FROM R

A
1
5
1

πA(R)

A
1
5

Bag Set
(no repeating values)

SQL Relational
Algebra

Next time, Lecture 6

More Relational Algebra, SQL,
Views

