Database Systems

NoSQL

12/12/16

Examples of database sizes

Digg: 3 TB —just to store the up/down votes
Twitter: 7 TB/day
Facebook:

— 50 TB — for the private messaging feature
—1PB photos

eBay: 2 PB data overall

RDBMS weakness

RDBMSs typically handle "massive” amounts of data in
complex domains, with frequent small read/writes.
— The archetypical RDBMS serves a bank.

Cassandra (NoSQL) can perform the ”store” operation into a

50GB database 2500 faster than using MySQL
Data-intensive applications don’t fit this pattern:
— MASSIVE+++ amounts of data (e.g. eBay)
— Super-fast indexing of documents (e.g. Google)
— Serving pages on high-traffic websites (e.g. Facebook)
— Streaming media (e.g. Spotify)

2016

S|P @ INIg ! S WIN

Most used DBMS

312 systems in ranking, December 2016
Rank Score

Nov Dec DBMS Database Model Dec Nov Dec
2016 2015 2016 2016 2015
1. 1. Oracle &3 Relational DBMS 1404.40 -8.60 -93.15
2. 2. MysQLE Relational DBMS 1374.41 +085 +7587
3 3. Microsoft SQL Server Relational DBMS 1226.66 6 +103.50
4. 45 PostgreSQL Relational DBMS 330.02 +4.20 +49.92

5. 4. MongoDB E3 Document store 328.68 2
6. 6. DB2 Relational DBMS 184.34 +2589 -11.78
7. A 8. Cassandra &3 Wide column store 134.28 1 +
8. 7. Microsoft Access Relational DBMS 124.70 -1.27 -1551

9. A 10. Redis Key-value store 119.89

10. 9. SQlLite Relational DBMS 110.83 -1.17 +9.98

Non-relational databases

MapReduce framework

— Google originally; Hadoop (Apache), ...
Key-Value stores

— BigTable (Google), Cassandra (Apache), ...
Document stores

— CouchDB, MongoDB, SimpleDB, ...
Graph databases

— Neo4j, FlockDB, ...
Semi-structured databases

— (Native) XML databases, ...

Semi-structured data (SSD)

More flexible than the relational model.

— The type of each "entity” is its own business.

— Labels indicate meanings of substructures.
Semi-structured: it is structured, but not everything is
structured the same way!

Support for XML and XQuery in e.g. Oracle, DB2, SQL Server.

Special case: Document databases

Document stores

* Roughly: Key-Value stores where the values
are "documents”

— XML, JSON, mixed semistructured data sets

* Typically incorporate a query language for the
document type.

— See previous lecture for discussion on XML
querying.

Document store implementations

* MongoDB
— Name short for "Humongous”
— Open source — owned by 10gen
— JSON(-like) semi-structured storage
— JavaScript query language
— Supports MapReduce for aggregations

* Apache CouchDB

SQL vs NoSQL

Terminology and Concepts Many concepts in MySQL have close analogs
in MongoDB. This table outlines some of the common concepts in each
system.

MySQL MongoDB
Table Collection
Row Document
Column Field
Joins Embedded documents, linking

Key-Value Stores

* Key-Value stores is a fancy name for persistant
maps (associative arrays, hash tables)

* Extremely simple interface — extremely
complex implementations.

* Values can be another {Key-value} documents

NoSQL — Data Example |

Customer 3 Entities....
"id": 1, ins?
"timestamp": "2016.03.26-11.47.02.065", Joins?
“nid": "B1234455X",
'name": "Alice", Objects
"objects": [{

Factures id": 1,
"facture™ [{ "concept": "Pencils",

" 1, “amount": 3.78}

"date": "26/03/2016", b

"total": 6.98 {

) id"™: 2,

"concept": "Folder",
"amount": 3.20}
p

NoSQL — Data Example Il

"id": 1,
"timestamp": "2016.03.26-11.47.02.065",
“"nid": "B1234455X",
"name": "Alice",
“facture™: [{
“id": 1,

"date": "26/03/2016",

"total": 6.98
“objects": [{
“id" 1,

"concept": "Pencils",
"amount": 3.78}

b

"id": 2,

"concept": "Folder",
“amount": 3.20}

}

SQL vs NoSQL

MySQL MongoDB
INSERT INTO users (user_id, db.users.insert({
age, status) user_id: 'bcdool’,
VALUES ('bcdeel', 45, 'A') age: 45,
status: 'A’
1

SELECT * FROM users db.users.find()

db.users.update(
UPDATE users SET status = 'C' { age: { $gt: 25 }
WHERE age > 25)
{ ¢$set: { status:
¢ rl,
{ multi: true }
)

12/12/16

SQL vs NoSQL

¢ Performance
—NoSQL

* Denormalized data

* No JOINs

* Complex information on a single query
—-saL

* Normalized schemas

* Redundance

* Complex queries to get complex data

SQL vs NoSQL

* Scaling
—NosQL

* Easy to distribute
* Easy to spread the data

-SsaL

« Still a challenge nowadays

Key-Value store implementations

* BigTable (Google)
— Sparse, distributed, multi-dimensional sorted map

— Proprietary — used in Google’s internals: Google Reader,
Google Maps, YouTube, Blogger, ...

* Cassandra (Apache)
— Originally Facebook’s PM database — now Open Source
(Apache top-level project)
— Used by Netflix, Digg, Reddit, Spotify, ...

MapReduce

* No data model — all data stored in files
* Operations supplied by user:
— Reader :: file - [input record]
— Map ::input record - <key, value>
— Reduce :: <key, [value]> - [output record]
— Writer :: [output record] - file
* Everything else done behind the scenes:
— Consistency, atomicity, distribution and parallelism, "glue”
* Optimized for broad data analytics
— Running simple queries over all data at once

MapReduce

Map Shuffle Reduce
1 J L

sort Group by key Merge

MapReduce implementations

The "secret” behind Google’s success
— Still going strong.
Hadoop (Apache)

— Open Source implementation of the MapReduce
framework

— Used by Ebay, Amazon, Last.fm, LinkedIn, Twitter,
Yahoo, Facebook internal logs (~15PB), ...

* MongoDB
* CouchDB

12/12/16

Graph Databases

* Data modeled in a graph structure
— Nodes = "entities”
— Properties = "tags”, attribute values
— Edges connect
* Nodes to nodes (relationships)

* Nodes to properties (attributes)

* Fast access to associative data sets

— All entities that share a common property
— Computing association paths

Graph database implementations

* Neodj
— Developed in Malmd
— Specialized query language: Cypher

* FlockDB

— Initially developed by Twitter to store user
relationships

— Apache licence

NoSQL — a hype?

Visibity

Technology ~ Peak of Inflated Trough of Stope of Plateau of
Trigger

Maturity
e NoSQL is not “the right choice” just because it’s new!
¢ Relational DBMSs still rule at what they were first designed

for: efficient access to large amounts of data in complex
domains. That’s still the vast majority!

NoSQL summary

* Where is SQL ideal?
— Requirements can be identified in advance
— Data integrity is a must
— Standards-based proven technology.

* Where is NoSQL ideal?

— Unrelated / Indeterminate / evolving data
requirements

— Simpler objectives where time is a requirement
— Speed and scalability is a must

NoSQL summary

* NoSQL ="Not only SQL”

« Different data models optimized for different
tasks

— MapReduce, Key-Value stores, Document stores,
Graph databases, ...

* Typically:
+ efficiency, scalability, flexibility, fault tolerance
- (no) query language, (less) consistency

12/12/16

NoSQL summary

Model _ Non-rlstonsl Relstional
Store data i JSON docurments, ey value pas,
wide column stores, or graphs EEECIRmOE
o = ecord bz the
dding new prapery may requie serng
New properies can be sdded on the fly e Frane
Relatondh B Relstonships ae ot
denormalizing data 1 data
sn objectn 3 single record tables
o o semiSrucued, IS ST G o sructred gt
Schema _Dynamic orflexble schemaz Stictschema
Database = schema-agnostic snd the schema i
ictated by he spplcation. Thisalowsfor |51 MUt be mntained and keptinsync
agilty and highly iterative development ppl
Transactions___ACID Supports AC
Availability _depending on solution SepEryainE)
Consistenc, avaiabilty, and performance can
b traded o meet the nesds of th spplication. COnSPAenY s proitzed overavilbiy and
(CAP theorem) o
nsertand update performance i dependent
upon how fast s it is committed, 3 trong
Performance PSfornance can b mainized by UG C01Ctncy s enfrced. Pertormance an be
e maximized by using scaling up available
esources and usingin-memory tructures.
pi [b pr
single record, z0 an update can happen in one acrozz many tables or rows,requiring many
operation join to complete an updste or s query
e Slngistpicaly achieved more

The End

