
1

Database Construction
(and Usage)

More on Modifications and Table Creation
Assertions
Triggers

Lecture 10

Summary – Modifications

• Modifying the contents of a database:
– Insertions

INSERT INTO tablename VALUES tuple

– Deletions
DELETE FROM tablename WHERE test over rows

– Updates
UPDATE tablename
SET attribute = value
WHERE test over rows

Insertions with queries

• The values to be inserted could be taken
from the result of a query:

– Example:
INSERT INTO tablename (query)

INSERT INTO GivenCourses
(SELECT course, period + 2, teacher, NULL
FROM GivenCourses
WHERE period <= 2);

All courses that are given in periods one and two are also
scheduled to be given two periods later, with the same teacher.

Explicit attribute lists

• Attribute order could be given explicit
when inserting.
– Example:

INSERT INTO
GivenCourses(course, period, teacher, nrStudents)
(SELECT course, period + 2, teacher, NULL
FROM GivenCourses
WHERE period <= 2);

Perhaps the teacher and nrStudents attributes were listed in
the other order in the definition of the table? Doesn’t matter
anymore since they are explicitly listed.

Quiz

What will the following insertion result in?

– Attribute lists can be partial. Any attributes not
mentioned will be given the value a default
value, which by default is NULL.

INSERT INTO
GivenCourses(course, period, teacher)
VALUES (’TDA357’, 3, ’Mickey’);

course period teacher numStud

Default values
• Attributes can be given default values.

– Specified when a table is defined using the DEFAULT
keyword.

– Example:

– Default default value is NULL.

CREATE TABLE GivenCourses (
course CHAR(6),
period INT,
teacher VARCHAR(50),
nrStudents INT DEFAULT 0,
… constraints …

);

2

Insertion with default values
• Leaving out an attribute in an insertion with

explicitly named attributes gives that row the
default value for that attribute:

• When no attribute list is given, the same effect
can be achieved using the DEFAULT keyword:

INSERT INTO
GivenCourses(course, period, teacher)
VALUES (’TDA357’, 3, ’Mickey’);

INSERT INTO GivenCourses
VALUES (’TDA357’, 3, ’Mickey’, DEFAULT);

Quiz!

course per teacher nrSt
TDA357 2 Mickey 130

TDA357 4 Tweety 95

TIN090 1 Pluto 62

code name
TDA357 Databases
TIN090 Algorithms

Courses
GivenCourses

DELETE FROM Courses
WHERE code = ’TDA357’;

Error, because of the reference from GivenCourses to
Courses. Is this reasonable?

Policies for updates and deletions

• Rejecting a deletion or update in the
presence of a reference isn’t always the
best option.

• SQL provides two other methods to
resolve the problem: Cascading or Set
NULL.
– Default is RESTRICT: reject the

deletion/update.

Cascading

• Cascading: When the referenced row is
deleted/updated, also delete/update any
rows that refer to it.
– Typically used for ”parts of a whole”.
– Set using ON [DELETE|UPDATE] CASCADE

CREATE TABLE GivenCourses (
course CHAR(6),
CONSTRAINT CourseExists

FOREIGN KEY course REFERENCES Courses(code)
ON DELETE CASCADE
ON UPDATE CASCADE

… more columns and constraints …
);

Set NULL
• Set NULL: When the referenced row is

deleted/updated, set the corresponding attribute
in any referencing rows to NULL.
– Typically used when there is a connection, but one

that does not affect the actual existence of the
referencing row.

– Set using ON [DELETE|UPDATE] SET NULL
CREATE TABLE GivenCourses (

teacher VARCHAR(50),
CONSTRAINT TeacherExists

FOREIGN KEY teacher REFERENCES Teachers(name)
ON DELETE SET NULL
ON UPDATE CASCADE

… more columns and constraints …
);

Argue for sensible policies for deletions and
updates for the Lectures table.

– GivenCourses.(course, period):
• ON DELETE CASCADE
• ON UPDATE CASCADE or RESTRICT

– Rooms.name:
• ON DELETE SET NULL or RESTRICT
• ON UPDATE CASCADE

What?
What?

What?
What?

Quiz!

Lectures(course, period, weekday, hour, room)
(course, period) -> GivenCourses.(course, period)
room -> Rooms.name

3

Argue for sensible policies for deletions and
updates for the Lectures table.

– GivenCourses.(course, period):
• ON DELETE CASCADE
• ON UPDATE CASCADE or RESTRICT

– Rooms.name:
• ON DELETE SET NULL or RESTRICT
• ON UPDATE CASCADE

Quiz!

Lectures(course, period, weekday, hour, room)
(course, period) -> GivenCourses.(course, period)
room -> Rooms.name

Single-attribute constraints
• Many constraints affect only the values of a

single attribute. SQL allows us to specify such
constraints together with the attribute itself, as
inline constraints.

• More than one inline constraint on the same
attribute is fine, just put them after one another.

• Default values should be specified before
constraints.

CREATE TABLE Courses (
code CHAR(6) CONSTRAINT CourseCode PRIMARY KEY,
name VARCHAR(50)

);

Special case: NOT NULL

• Specifying that a value must be non-NULL
can be done with a simplified syntax:

instead of

CREATE TABLE Courses (
code CHAR(6) CONSTRAINT CourseCode PRIMARY KEY,
name VARCHAR(50) NOT NULL

);

CREATE TABLE Courses (
code CHAR(6) CONSTRAINT CourseCode PRIMARY KEY,
name VARCHAR(50) CHECK (name IS NOT NULL)

);

Special case: REFERENCES
• When a foreign key constraint is defined inline,

the FOREIGN KEY keywords can be left out.
• An attribute that references another attribute

could be seen as holding copies of that other
attribute. Why specify the type again?

– The type can be left out even if the foreign key
constraint is specified separately.

CREATE TABLE GivenCourses (
course REFERENCES Courses(code),
… more columns and constraints …

);

Quiz!

It might be tempting to write

Why will this not work?
An inline constraint only constrains the current

attribute. What the above tries to achieve is to
declare two separate primary keys, which is not
allowed in a table.

CREATE TABLE GivenCourses (
course REFERENCES Courses(code) PRIMARY KEY,
period INT CHECK (period IN (1,2,3,4)) PRIMARY KEY,
… more columns and constraints …

);

Constraints
• We have different kinds of constraints:

– Dependency constraints (X → A)
• Table structure, PRIMARY KEY, UNIQUE

– Referential constraints
• FOREIGN KEY … REFERENCES

– Value constraints
• CHECK

– Miscellaneous constraints (like multiplicity)
• E.g. no teacher may hold more than 2 courses at the same

time.
• How do we handle these?

4

Quiz!

”No teacher may hold more than two
courses in the same period!”

How can we formulate this constraint in
SQL?

NOT EXISTS (
SELECT teacher, period
FROM GivenCourses
GROUP BY teacher, period
HAVING COUNT(course) > 2

);

course period teacher numStud

Assertions

• Assertions are a way to specify global
constraints on a database.
– Create using CREATE ASSERTION:

– Example:
CREATE ASSERTION NotOverworked
CHECK (NOT EXISTS

(SELECT teacher, period
FROM GivenCourses
GROUP BY teacher, period
HAVING COUNT(course) > 2)

);

CREATE ASSERTION name CHECK test

PostgreSQL does not support
CREATE ASSERTION,
So we emulate them using
TRIGGER

Triggers

• When something wants to change the
database in some way, trigger another
action as well or instead.
– Example (silly): Whenever a new course is

inserted in Courses, schedule that course to
be given in period 1, with NULL for the
teacher and nrStudents fields.

– Example: Whenever a lecture is scheduled to
take place at 8:00, schedule the lecture to
10:00 instead.

Assertions as triggers

• ”Instead” could mean to do nothing, i.e.
reject the update, which means we can use
triggers to simulate assertions.
– Still costly, but puts the burden on the user to

specify when the conditions should be checked
(hand optimization).

– Example: Whenever a teacher is scheduled to
hold a course in a period where he or she
already holds two courses, reject the insertion.

Basic trigger structure

CREATE TRIGGER name
[BEFORE|AFTER] [INSERT|DELETE|UPDATE] ON tablename
FOR EACH [ROW|STATEMENT]
WHEN condition
EXECUTE PROCEDURE function()

Decide whether to run
the trigger or not.

What should happen when
the trigger is triggered.

A trigger is sometimes referred to as an
Event-Condition-Action rule (or ECA rule)

Stored procedures

Where statement is
• IF (condition)

THEN statement
ELSE statement

END IF;
• RAISE EXCEPTION ‘message’;
• sqlstatement;

CREATE FUNCTION name() RETURNS TRIGGER AS $$
BEGIN

<statements>
END
$$ LANGUAGE ’plpgsql’;

We only consider TRIGGER
procedures

5

Example trigger:

CREATE FUNCTION addDefaultGivenCourse() RETURNS
TRIGGER AS $$
BEGIN

INSERT INTO GivenCourses(course, period)
VALUES (NEW.code, 1);

END
$$ LANGUAGE ’plgsql’;

CREATE TRIGGER DefaultScheduling
AFTER INSERT ON Courses
FOR EACH ROW
EXECUTE PROCEDURE addDefaultGivenCourse();

’NEW’ refers to the newly
inserted tuple

Out shorthand notation:

CREATE FUNCTION addDefaultGivenCourse() RETURNS
TRIGGER AS $$
BEGIN

INSERT INTO GivenCourses(course, period)
VALUES (NEW.code, 1);

END
$$ LANGUAGE ’plgsql’;

addDefaultGivenCourse() à
INSERT INTO GivenCourses(course, period)
VALUES (NEW.code, 1);

Trigger events
• The event clause of a trigger

definition defines when to try
the trigger:
– AFTER or BEFORE (for tables)
– INSERT, DELETE or UPDATE

• An update could be an UPDATE
OF (attributes) to make it consider
only certain attributes.

– ON which table to apply the
trigger.

– Example: AFTER INSERT ON Courses

CREATE TRIGGER name
event clause
”for each” clause
condition clause
EXECUTE PROCEDURE x()

FOR EACH ROW
• A single insert, update or

deletion statement could
affect more than one row.

• If FOR EACH ROW is
specified, the trigger is run
once for each row
affected, otherwise once
for each statement.

• Default is FOR EACH
STATEMENT, which could
also be stated explicitly.

CREATE TRIGGER name
event clause
”for each” clause
condition clause
EXECUTE PROCEDURE x()

Trigger Condition
• The condition specifies

whether the action should
be run or not.

• Any boolean-valued
expression may be used.

• Evaluated before or after
the event, depending on
BEFORE or AFTER.

• Can refer to the NEW and
OLD rows WHEN

(NEW.code
LIKE ’TDA%’)

Example:

CREATE TRIGGER name
event clause
”for each” clause
condition clause
EXECUTE PROCEDURE x()

Example revisited

CREATE TRIGGER DefaultScheduling
AFTER INSERT ON Courses
FOR EACH ROW
EXECUTE PROCEDURE f();

Because there is a foreign key constraint from
GivenCourses to Courses, and until we have
inserted the row into Courses, there would be
nothing for the new row in GivenCourses to refer to.

Why must this be run AFTER INSERT? Why not BEFORE?

Why?

f() à INSERT INTO GivenCourses(course, period)
VALUES (NEW.code, 1);

6

Example revisited

CREATE TRIGGER DefaultScheduling
AFTER INSERT ON Courses
FOR EACH ROW
EXECUTE PROCEDURE f();

Because there is a foreign key constraint from
GivenCourses to Courses, and until we have
inserted the row into Courses, there would be
nothing for the new row in GivenCourses to refer to.

Why must this be run AFTER INSERT? Why not BEFORE?

f() à INSERT INTO GivenCourses(course, period)
VALUES (NEW.code, 1);

Recap on views

• Views are persistent named queries – they
can be referred to just as if they were
tables, but their data is contained in other
(base) tables.

• Also referred to as virtual tables.
CREATE VIEW DBLectures AS
SELECT room, hour, weekday
FROM Lectures
WHERE course = ’TDA357’

AND period = 3;

Updating views

• Views contain no data of their own, and so
cannot normally be updated.

• But views can be queried without
containing any data of their own. The trick
is to translate the query on the view into
what it really means, i.e. the view
definition.

• Why not do the same for modifications?

Triggers on views

• We can define what modifications on
views mean using triggers.

• Special form of event for views only:
INSTEAD OF.

f() à INSERT INTO Lectures
VALUES (’TDA357’, 2, NEW.weekday,

NEW.hour, NEW.room);

CREATE TRIGGER DBLectureInsert
INSTEAD OF INSERT ON DBLectures
FOR EACH ROW
EXECUTE PROCEDURE f()

Summary – Triggers

• Triggers specify extra actions to take on
certain events.
– Event: BEFORE or AFTER a modification
– Condition: test if we should run the trigger
– Action: The stuff to be done.

• SET to change values in the rows being modified.

• Triggers can be defined on views
– Event: INSTEAD OF

Next time, Lecture 11

