
1

Database Usage
(and Construction)

More SQL Queries and Relational Algebra

Lecture 7

Previously…

Capacity per campus?
name capacity campus

HB2 186 Johanneberg

HC1 105 Johanneberg

HC2 115 Johanneberg

Jupiter44 64 Lindholmen

Svea239 60 Lindholmen

VR 300 Neverland

name capacity campus
HB2 186 Johanneberg

HC1 105 Johanneberg

HC2 115 Johanneberg

Jupiter44 64 Lindholmen

Svea239 60 Lindholmen

VR 300 Neverland

}
}

406

124

SUM(capacity) campus
406 Johanneberg

124 Lindholmen

300 Neverland

SELECT SUM(capacity), campus FROM Rooms GROUP BY campus;

Grouping
• Grouping intuitively means to partition a relation

into several groups, based on the value of some
attribute(s).
– ”All courses with this teacher go in this group, all

courses with that teacher go in that group, …”

• Each group is a sub-relation, and aggregations
can be computed over them.

• Within each group, all rows have the same value
for the attribute(s) grouped on, and therefore we
can project that value as well!

Grouping
• Grouping = given a relation R, a set of attributes

X, and a set of aggregation expressions G;
partition R into groups R1…Rn such that all rows
in Ri have the same value on all attributes in X,
and project X and G for each group.

– ”For each X, compute G”

– γ = gamma = greek letter g = grouping

γX,G(R)
SELECT X,G
FROM R
GROUP BY X;

Example: List the average number of students that
each teacher has on his or her courses.

SELECT teacher,
AVG(nrStudents)

FROM GivenCourses
GROUP BY teacher;

course per teacher nrSt.
TDA357 2 Niklas Broberg 130

DIT952 3 Niklas Broberg 70

TIN090 1 Devdatt Dubhashi 62

teacher AVG(nrSt.)
Niklas Broberg 100

Devdatt Dubhashi 62

γteacher, AVG(nrStudents)(GivenCourses)

SQL?

Relational Algebra?

Result?

2

Example: List the average number of students that
each teacher has on his or her courses.

SELECT teacher,
AVG(nrStudents)

FROM GivenCourses
GROUP BY teacher;

course per teacher nrSt.
TDA357 2 Niklas Broberg 130

DIT952 3 Niklas Broberg 70

TIN090 1 Devdatt Dubhashi 62

teacher AVG(nrSt.)
Niklas Broberg 100

Devdatt Dubhashi 62

γteacher, AVG(nrStudents)(GivenCourses)

Specialized renaming of attributes

• We’ve seen the general renaming operator
already:

– Rename R to A and its attributes to X.
• Can be akward to use, so we are allowed

an easier way to rename attributes:

– E.g.
– Works in normal projection (π) as well.

ρA(X)(R)

γX,G→B(R)
γteacher, AVG(nrStudents)→avgStudents(GivenCourses)

Tests on groups
• Aggregations can’t be put in the WHERE clause

– they’re not functions on rows but on groups.
• Sometimes we want to perform tests on the

result of an aggregation.
– Example: List all teachers who have an average

number of students of >100 in their courses.

• SQL allows us to put such tests in a special
HAVING clause after GROUP BY.

Example

code period teacher #students

TDA357 2 Niklas Broberg 130

TIN090 1 Devdatt Dubhashi 95

TDA357 3 Aarne Ranta 135
TDA283 2 Aarne Ranta 70

SELECT teacher
FROM GivenCourses
GROUP BY teacher
HAVING AVG(nrStudents) > 100;

AVG(nrSt.)
130

95

102.5

Quiz!
• There is no correspondence in relational

algebra to the HAVING clause of SQL.
Why?
– Because we can express it with an extra

renaming and a selection. Example:
SELECT teacher
FROM GivenCourses
GROUP BY teacher
HAVING AVG(nrStudents) > 100;

σavgSt > 100(γteacher, AVG(nrStudents) → avgSt(GivenCourses))

Sorting relations
• Relations are unordered by default.
• Operations could potentially change any existing

ordering.

– Sort relation R on attributes X.
– Ordering only makes sense at the top level, or if only

a given number of rows are sought, e.g. the top 5.
– (For top 5: Append ”LIMIT 5”)

• τ = tau = greek letter t = sort (s is taken)

τX(R) ORDER BY X [DESC]

3

Example

SELECT *
FROM Courses
ORDER BY name;

code name

TIN090 Algorithms

TDA590 Compiler
Construction

TDA357 Databases

SELECT-FROM-WHERE-
GROUPBY-HAVING-ORDERBY

• Full structure of an SQL query:
SELECT attributes
FROM tables
WHERE tests over rows
GROUP BY attributes
HAVING tests over groups
ORDER BY attributes

SELECT X,G
FROM T
WHERE C
GROUP BY Y
HAVING D
ORDER BY Z;

τZ’(πX,G’(σD’(γY,G’(σC(T)))))

Only the SELECT
and FROM clauses
must be included.

What?

SELECT-FROM-WHERE-
GROUPBY-HAVING-ORDERBY

• Full structure of an SQL query:
SELECT attributes
FROM tables
WHERE tests over rows
GROUP BY attributes
HAVING tests over groups
ORDER BY attributes

SELECT X,G
FROM T
WHERE C
GROUP BY Y
HAVING D
ORDER BY Z;

τZ’(πX,G’(σD’(γY,G’(σC(T)))))

Only the SELECT
and FROM clauses
must be included.

X must be a subset of Y.
Primes ’ mean we need some renaming.

Example:
SELECT name, AVG(nrStudents) AS avSt
FROM Courses, GivenCourses
WHERE code = course
GROUP BY code, name
HAVING AVG(nrStudents) > 100
ORDER BY avSt;

course per teacher nrSt
TDA357 2 Niklas Broberg 130

TDA357 3 Aarne Ranta 95

TIN090 1 Devdatt Dubhashi 62

code name
TDA357 Databases
TIN090 Algorithms

Courses
GivenCourses

τavSt(πname, avSt(σavSt > 100
(γcode, name, AVG(nrStudents)→avSt
(σcode = course(Courses x GivenCourses)))))

Example:
SELECT name, AVG(nrStudents) AS avSt
FROM Courses, GivenCourses
WHERE code = course
GROUP BY code, name
HAVING AVG(nrStudents) > 100
ORDER BY avSt;

code name course per teacher nrSt
TDA357 Databases TDA357 2 Niklas Broberg 130

TDA357 Databases TDA357 3 Aarne Ranta 95

TDA357 Databases TIN090 1 Devdatt Dubhashi 62

TIN090 Algorithms TDA357 2 Niklas Broberg 130

TIN090 Algorithms TDA357 3 Aarne Ranta 95

TIN090 Algorithms TIN090 1 Devdatt Dubhashi 62

τavSt(πname,avSt(σavSt>100(γcode,name,AVG(nrStudents)→avSt(σcode=course(Courses x GivenCourses)))))

Example:
SELECT name, AVG(nrStudents) AS avSt
FROM Courses, GivenCourses
WHERE code = course
GROUP BY code, name
HAVING AVG(nrStudents) > 100
ORDER BY avSt;

τavSt(πname,avSt(σavSt>100(γcode,name,AVG(nrStudents)→avSt(σcode=course(Courses x GivenCourses)))))

code name course per teacher nrSt
TDA357 Databases TDA357 2 Niklas Broberg 130

TDA357 Databases TDA357 3 Aarne Ranta 95

TDA357 Databases TIN090 1 Devdatt Dubhashi 62

TIN090 Algorithms TDA357 2 Niklas Broberg 130

TIN090 Algorithms TDA357 3 Aarne Ranta 95

TIN090 Algorithms TIN090 1 Devdatt Dubhashi 62

code name course per teacher nrSt
TDA357 Databases TDA357 2 Niklas Broberg 130

TDA357 Databases TDA357 3 Aarne Ranta 95

TIN090 Algorithms TIN090 1 Devdatt Dubhashi 62

4

Example:
SELECT name, AVG(nrStudents) AS avSt
FROM Courses, GivenCourses
WHERE code = course
GROUP BY code, name
HAVING AVG(nrStudents) > 100
ORDER BY avSt;

τavSt(πname,avSt(σavSt>100(γcode,name,AVG(nrStudents)→avSt(σcode=course(Courses x GivenCourses)))))

AVG(nrSt)

112.5

62

code name

TDA357 Databases

TIN090 Algorithms

AVG(nrSt)

112.5

62

code name course per teacher nrSt

TDA357 Databases TDA357 2 Niklas Broberg 130

TDA357 Databases TDA357 3 Aarne Ranta 95

TIN090 Algorithms TIN090 1 Devdatt Dubhashi 62

Example:
SELECT name, AVG(nrStudents) AS avSt
FROM Courses, GivenCourses
WHERE code = course
GROUP BY code, name
HAVING AVG(nrStudents) > 100
ORDER BY avSt;

τavSt(πname,avSt(σavSt>100(γcode,name,AVG(nrStudents)→avSt(σcode=course(Courses x GivenCourses)))))

code name

TDA357 Databases

TIN090 Algorithms

AVG(nrSt)

112.5

62

code name

TDA357 Databases

AVG(nrSt)

112.5

Example:
SELECT name, AVG(nrStudents) AS avSt
FROM Courses, GivenCourses
WHERE code = course
GROUP BY code, name
HAVING AVG(nrStudents) > 100
ORDER BY avSt;

τavSt(πname,avSt(σavSt>100(γcode,name,AVG(nrStudents)→avSt(σcode=course(Courses x GivenCourses)))))

code name

TDA357 Databases

AVG(nrSt)

112.5

name avSt

Databases 112.5

Example:
SELECT name, AVG(nrStudents) AS avSt
FROM Courses, GivenCourses
WHERE code = course
GROUP BY code, name
HAVING AVG(nrStudents) > 100
ORDER BY avSt;

τavSt(πname,avSt(σavSt>100(γcode,name,AVG(nrStudents)→avSt(σcode=course(Courses x GivenCourses)))))

name avSt

Databases 112.5

Why not simply this?
SELECT name, AVG(nrStudents) AS avSt
FROM Courses, GivenCourses
WHERE code = course, avSt > 100
GROUP BY code, name
HAVING AVG(nrStudents) > 100
ORDER BY avSt;

Because at the time of “WHERE”,
aggregates have not been computed yet!

Remember: If “GROUP BY” is used, then aggregates are computed
over each “GROUP BY” group, not over all entries

SELECT name, AVG(nrStudents) AS avSt
FROM Courses, GivenCourses
WHERE code = course,
GROUP BY code, name
HAVING AVG(nrStudents) > 100
ORDER BY avSt;

What about this then!?!?

Lexical vs logical ordering

• Lexical order: the way it’s written in SQL
• Logical order: the way the query executes

SELECT attributes
FROM tables
WHERE tests over rows
GROUP BY attributes
HAVING tests over groups
ORDER BY attributes

FROM tables
WHERE tests over rows
GROUP BY attributes
HAVING tests over groups
SELECT ”attributes”
ORDER BY attributes

Lexical order Logical order

5

Available attributes in SELECT
• Aggregate functions “summarize” values per group

– Without GROUP BY, the group is the entire table
• If aggregate functions are used, then only attributes can

be selected that make sense in a grouping

SELECT campus, MAX(capacity)
FROM Rooms

SELECT MAX(capacity)
FROM Rooms

SELECT campus, MAX(capacity)
FROM Rooms
GROUP BY campus

Valid! Group = table, MAX returns 1 value

Invalid! Group = table, MAX returns 1 value,
but 3 different campuses

Valid! Grouped per campus, MAX returns 1
value per campus, there is 1 campus name
per group

BREAK

Relations as sets

• Relations are sets of tuples.
• Set theory has plenty to borrow from:

– Some we’ve seen, like ∊ (IN).
– More operators:

• U (union)

• ∩ (intersection)

• ∖ (set difference)

Set operations
• Common set operations in SQL

– UNION: Given two relations R1 and R2, add them
together to form one relation R1 U R2.

– INTERSECT: Given two relations R1 and R2, return all
rows that appear in both of them, forming R1 ∩ R2.

– EXCEPT: Given two relations R1 and R2, return all
rows that appear in R1 but not in R2, forming R1 ∖ R2.

• All three operations require that R1 and R2 have
(almost) the same schema.
– Attribute names may vary, but number, order and

types must be the same.

Quiz!
List all courses and the periods they are given in.

Courses that are not scheduled for any period
should also be listed, but with NULL in the field
for period. You must use a set operation.

(SELECT course, period
FROM GivenCourses)

UNION
(SELECT code, NULL
FROM Courses
WHERE code NOT IN

(SELECT course
FROM GivenCourses));

course period teacher #students
TDA357 2 Niklas Broberg 130

TDA357 3 Aarne Ranta 135

TIN090 1 Devdatt Dubhashi 95

TDA283 2 Aarne Ranta 70

code name

TIN090 Algorithms

TDA283 Compiler
Construction

TDA357 Databases

TDA100 AI

(SELECT course, period
FROM GivenCourses)

UNION
(SELECT code, NULL
FROM Courses
WHERE code NOT IN

(SELECT course
FROM GivenCourses));

6

course period
TDA357 2

TDA357 3

TIN090 1

TDA283 2

code NULL

TDA100 Null

(SELECT course, period
FROM GivenCourses)

UNION
(SELECT code, NULL
FROM Courses
WHERE code NOT IN

(SELECT course
FROM GivenCourses));

U

Result

course period
TDA357 3

TDA357 4

TIN090 1

TDA283 2

TDA100

Not sets but bags!
• In set theory, a set cannot contain

duplicate values. Either a value is in the
set, or it’s not.

• In SQL, results of queries can contain the
same tuples many times.
– Done for efficiency, eliminating duplicates is

costly.
• A set where duplicates may occur is called

a bag, or multiset.

Controlling duplicates
• Queries return bags by default. If it is important

that no duplicates exist in the set, one can add
the keyword DISTINCT.
– Example:

• DISTINCT can also be used with aggregation
functions.
– Example:

SELECT DISTINCT teacher
FROM GivenCourses;

SELECT COUNT(DISTINCT teacher)
FROM GivenCourses;

course period teacher #students
TDA357 2 Niklas Broberg 130

TDA357 3 Aarne Ranta 135

TIN090 1 Devdatt Dubhashi 95

TDA283 2 Aarne Ranta 70

SELECT teacher
FROM GivenCourses;

teacher
Niklas Broberg

Aarne Ranta

Devdatt Dubhashi

Aarne Ranta

course period teacher #students
TDA357 2 Niklas Broberg 130
TDA357 3 Aarne Ranta 135
TIN090 1 Devdatt Dubhashi 95
TDA283 2 Aarne Ranta 70

SELECT DISTINCT teacher
FROM GivenCourses;

teacher
Niklas Broberg

Aarne Ranta

Devdatt Dubhashi

7

course period teacher #students
TDA357 2 Niklas Broberg 130

TDA357 3 Aarne Ranta 135

TIN090 1 Devdatt Dubhashi 95

TDA590 2 Aarne Ranta 70

SELECT COUNT (teacher)
FROM GivenCourses;

COUNT(teacher)
4

course period teacher #students
TDA357 2 Niklas Broberg 130
TDA357 3 Aarne Ranta 135
TIN090 1 Devdatt Dubhashi 95

TDA590 2 Aarne Ranta 70

SELECT COUNT (DISTINCT teacher)
FROM GivenCourses;

COUNT (DISTINCT teacher)

3

Duplicate elimination
• Duplicate elimination = Given relation R, remove

all duplicate rows.

– Remove all duplicates from R.

• δ = delta = greek letter d = duplicate elimination

δ(R)

SELECT DISTINCT X
FROM R
WHERE C;

δ(πX(σC(R)))

Retaining duplicates
• Set operations eliminate duplicates by default.

– For pragmatic reasons – to compute either
intersection or set difference efficiently, the relations
need to be sorted, and then eliminating duplicates
comes for free.

• If it is important that duplicates are considered,
one can add the keyword ALL.
– Example:

(SELECT room
FROM Lectures)

EXCEPT ALL
(SELECT name
FROM Rooms);

All rooms appear once in Rooms. The set
difference will remove each room once
from the first set, thus leaving those rooms
that have more than one lecture in them.

Common idiom
List all courses and the periods they are given in.

Courses that are not scheduled for any period
should also be listed, but with NULL in the field
for period. You must use a set operation.

(SELECT code, period
FROM Courses, GivenCourses
WHERE code = course)

UNION
(SELECT code, NULL
FROM Courses
WHERE code NOT IN

(SELECT course
FROM GivenCourses));

First compute those
that fit in the join, then
union with those that
don’t.

Outer join
• Compute the join as usual, but retain all tuples

that don’t fit in from either or both operands,
padded with NULLs.

– FULL means retain all tuples from both operands.
LEFT or RIGHT retains only those from one of the
operands.

– Can be used with ordinary join as well.
• R1 LEFT OUTER JOIN R2 ON C;

R1 ⋈ R2˚
SELECT *
FROM
R1 NATURAL FULL OUTER JOIN R2;

8

Quiz!
List all courses and the periods they are given in.

Courses that are not scheduled for any period
should also be listed, but with NULL in the field
for period.

SELECT code, period
FROM Courses LEFT OUTER JOIN GivenCourses

ON code = course;
course period teacher #students

TDA357 2 Niklas Broberg 130

TDA357 3 Aarne Ranta 135

TIN090 1 Devdatt Dubhashi 95

TDA283 2 Aarne Ranta 70

code name

TIN090 Algorithms

TDA283 Compiler
Construction

TDA357 Databases

TDA100 AI

SELECT code, period
FROM Courses

LEFT OUTER JOIN
GivenCourses

ON code = course;

code period
TDA357 3

TDA357 4

TIN090 1

TDA283 2

TDA100 Null

SELECT code, period
FROM Courses

LEFT OUTER JOIN
GivenCourses

ON code = course;

Summary
SQL and Relational Algebra

• SQL is based on
relational algebra.
– Operations over relations

• SELECT-FROM-
WHERE-GROUPBY-
HAVING-ORDERBY

• Operations for:
– Selection of rows (σ)
– Projection of columns (π)
– Combining tables

• Cartesian product (x)
• Join, natural join, outer

join (⋈C, ⋈, ⋈)

– Grouping and aggregation
• Grouping (γ)
• SUM, AVG, MIN, MAX,

COUNT
– Set operations

• Union (∪)
• Intersect (∩)
• Set difference (∖)

– Miscellaneous
• Renaming (ρ)
• Duplicate elimination (δ)
• Sorting (τ)

• Subqueries
– Sequencing
– (Views)

˚

Next time, Lecture 8

More on Modifications and Table Creation
Assertions
Triggers

