
1

Database Optimization
Indexes

Non-natural keys
Denormalization

Lecture 11 Lab: Stuck waiting for grading of 
Task X?

“We can not continue with Task X+1 before Task X 
is accepted, and the TA is taking too long!!”

• TAs are also people with busy schedules and a 
lot of work.

• No need to wait until Task X is accepted to start 
working on Task X+1

• Any changes required for Task X must be 
applied to Task X+1 too, but hopefully those will 
be minimal

Task 5: procedure
• Show your finished Task 5 before or in the last 

lab session
– Prepare your demo, make it go smooth
– Anticipate that you need to make changes, don’t wait 

until last minute
– Only submit Task 5 to Fire after TA’s approval

• Mention “seen by <TA’s name>” in submission note
• Submit directly after TA approval

• Demo deadline: Friday 16 December 2016
• Fire deadline: Monday 19 December 2016

Why use Views from JDBC
• Security

– Separate permissions on VIEW (e.g. read-only, potentially 
enforced with trigger)

• Hide data
– Tables may contain sensitive data that not everyone needs 

access to (e.g. credit card numbers)
• Hide complexity

– Queries may be complicated with joins, unions, subqueries, etc. 
This complexity can be hidden with a view

• Support legacy code
– Refactoring a table may break a lot of code. A view can preserve 

the original look of a table while the latter changes in the 
background.

Why you should not blindly copy/paste from 
Stackoverflow

Source: https://laurent22.github.io/so-injections/

± 45% contains SQLi

"We should forget about small efficiencies, 
say about 97% of the time: premature 

optimization is the root of all evil“

- Donald Knuth, 1974

This does not imply: do not optimize,
But instead: focus on functionality first, and then optimize



2

Quiz!

How costly is this operation (naive solution)?

SELECT *
FROM   Lectures
WHERE  course = ’TDA357’

AND period = 3;

course per weekday hour room
TDA356 2 VR Monday 13:15

TDA356 2 VR Thursday 08:00

TDA356 4 HB1 Tuesday 08:00

TDA356 4 HB1 Friday 13:15

TIN090 1 HC1 Wednesday 08:00

TIN090 1 HA3 Thursday 13:15

n

Go through all n rows, compare 
with the values for course and 
period = 2n comparisons

Quiz!

Can you think of a way to make it faster?
SELECT *
FROM   Lectures
WHERE  course = ’TDA357’

AND period = 3;

If rows were stored sorted according to the values 
course and period, we could get all rows with the 
given values faster (O(log n) for tree structure).

Storing rows sorted is expensive, but we can use 
an index that given values of these attributes 
points out all sought rows (an index could be a 
hash map, giving O(1) complexity to lookups).

Index
• When relations are large, scanning all 

rows to find matching tuples becomes very 
expensive.

• An index on an attribute A of a relation is a 
data structure that makes it efficient to find 
those tuples that have a fixed value for 
attribute A.
– Example: a hash table gives amortized O(1) 

lookups.

Quiz!

Asymptotic complexity (O(x) notation) is 
misleading here. Why?

The asymptotic complexity works for data structures in main 
memory. But when working with stored persistent data, the 
running time of the data structure, once in main memory, is 
negligible compared to the time it takes to read data from 
disk. What really matters to get fast lookups in a database is 
to minimize the number of disk blocks accessed (could use 
asymptotic complexity over disk block accessing though).
Indexes help here too though. If a relation is stored over a 
number of disk blocks, knowing in which of these to look is 
helpful.

Disk and main memory

x =
y =

Program

Main memory

input()

output()

read()

write()

Disk

Costly!Cheap!

Typical costs
• Some (over-simplified) typical costs of disk 

accessing for database operations on a 
relation stored over n blocks:
– Query the full relation: n (disk operations)
– Query with the help of index: k, where k is the 

number of blocks pointed to (1 for key).
– Access index: 1
– Insert new value: 2 (one read, one write)
– Update index: 2 (one read, one write)



3

Example:
SELECT *
FROM   Lectures
WHERE  course = ’TDA357’

AND period = 3;

Assume Lectures is stored in n disk blocks. With no 
index to help the lookup, we must look at all rows, 
which means looking in all n disk blocks for a total 
cost of n.

With an index, we find that there are 2 rows with the 
correct values for the course and period attributes. 
These are stored in two different blocks, so the total 
cost is 3 (2 blocks + reading index).

Quiz!

How costly is this operation?

SELECT *
FROM   Lectures, Courses
WHERE  course = code;

Go through all n blocks in Lectures, 
compare the value for course from 
each row with the values for code in 
all rows of Courses, stored in all m
blocks. The total cost is thus n * m
accessed disk blocks.

Lectures: n disk blocks

Courses: m disk blocks

Index on code in Courses:No index:
Go through all n blocks in Lectures, 
compare the value for course from 
each row with the index. Since 
course is a key, each value will exist 
at most once, so the cost is 2 * n + 1
accessed disk blocks (1 for fetching 
the index once).

CREATE INDEX
• Most DBMS support the statement

CREATE INDEX index name
ON table (attributes);

– Example:

– Statement not in the SQL standard, but most
DBMS support it anyway.

– Primary keys are given indexes implicitly (by 
the SQL standard).

– In PostgreSQL, use \di to list indexes

CREATE INDEX courseIndex
ON Courses (code);

Important properties

• Indexes are separate data stored by itself.
§ Can be created

ü on newly created relations
ü on existing relations

- will take a long time on large relations.

§ Can be dropped without deleting any table data.

• SQL statements do not have to be 
changed
– a DBMS automatically uses any indexes.

Quiz!
Why don’t we have indexes on all (combinations 

of) attributes for faster lookups?

– Indexes require disk space.
– Modifications of tables are more expensive.

• Need to update both table and index.

– Not always useful
• The table is very small.
• We don’t perform lookups over it (Note: lookups ≠ queries).

– Using an index costs extra disk block accesses.

EXPLAIN
• Show the execution plan of a statement

• Used to identify performance issues in a query
• Several options to show more detail

• Don’t forget: query is actually executed! Use a 
transaction to EXPLAIN without consequences

EXPLAIN SELECT * FROM Lectures;

EXPLAIN (Analyze true, Timing true)
SELECT * FROM Lectures;

BEGIN;
EXPLAIN DELETE FROM Lectures;
ROLLBACK;



4

Rule of thumb

• Mostly queries on tables – use indexes for 
key attributes.

• Mostly updates – be careful with indexes!

Quiz!
Assume we have an index on Lectures for (course, 

period, weekday) which is the key. How costly 
are these queries?
SELECT *
FROM   Lectures
WHERE  course = ’TDA357’

AND period = 3;

Lectures: n disk blocks

SELECT *
FROM   Lectures
WHERE  weekday = ’Monday’

AND room = ’VR’;

A multi-attribute index is typically organized hierarchically. First the 
rows are indexed according to the first attribute, then according to 
the second within each group, and so on.
Thus the left query costs at most k + 1 where k is the number of 
rows matching the values. The right query can’t use the index, and 
thus costs n, where n is the size of the relation in disk blocks.

Example: Suppose that the Lectures relation is 
stored in 20 disk blocks, and that we typically 
perform three operations on this table:
– insert new lectures (Ins)
– list all lectures of a particular course (Q1)
– list all lectures in a given room (Q2)

Let’s assume that in an average week there are:
– 2 lectures for each course, and
– 10 lectures in each room.

Let’s also assume that
– each course has lectures stored in 2 blocks, and
– each room has lectures stored in 7 (some lectures are 

stored in the same block).

Lectures example: blocks

Index on
(course, period, weekday)

Index on
room

Costs
Case A Case B Case C Case D

No index
Index on                

(course, period, weekday)
Index on 

room Both indexes
Ins 2 4 4 6
Q1 20 3 20 3
Q2 20 20 8 8

Ins Q1 Q2 Case A Case B Case C Case D
0.2 0.4 0.4 16.4 10 12 5.6
0.8 0.1 0.1 5.6 5.5 6 5.9
0.1 0.6 0.3 18.2 8.2 14.8 4.8

Insert new lectures (Ins)
List all lectures of a particular course (Q1)
List all lectures in a given room (Q2)

The amortized cost depends on the proportion of operations of each kind.

What cost?
What cost?
What cost?

Costs
Case A Case B Case C Case D

No index
Index on                

(course, period, weekday)
Index on 

room Both indexes
Ins 2 4 4 6
Q1 20 3 20 3
Q2 20 20 8 8

Ins Q1 Q2 Case A Case B Case C Case D
0.2 0.4 0.4 16.4 10 12 5.6
0.8 0.1 0.1 5.6 5.5 6 5.9
0.1 0.6 0.3 18.2 8.2 14.8 4.8

Insert new lectures (Ins)
List all lectures of a particular course (Q1)
List all lectures in a given room (Q2)

The amortized cost depends on the proportion of operations of each kind.



5

Real world
• The examples given here are very simplified! In 

reality, many more factors matter:
– Data layout on disk, storage schemes
– Size of disk blocks
– Size of main memory
– Disk latency, bus speed, …

• Indexes can be arbitrarily large!
– Not uncommon for index to be larger than the data 

set.
– Different index schemes also matter.

Dense index on sequential file

KBB056
KMB017
TDA357
TMS145
UMF012
UMF018

KBB056 KC Monday 08

KMB017 MVH12 Tuesday 08
KMB017 MVH12 Wednesday 15
TDA357 HA4 Monday 10
TDA357 HB1 Thursday 10
TMS145 KC Friday 08
UMF012 MVF23 Friday 13
UMF012 MVF23 Monday 13
UMF018 MVF23 Tuesday 10

Sparse index on sequential file

KBB056
TDA357
UMF012

KBB056 KC Monday 08

KMB017 MVH12 Tuesday 08
KMB017 MVH12 Wednesday 15
TDA357 HA4 Monday 10
TDA357 HB1 Thursday 10
TMS145 KC Friday 08
UMF012 MVF23 Friday 13
UMF012 MVF23 Monday 13
UMF018 MVF23 Tuesday 10

Multi-level indexes

Outer index Inner index

index 
block 0

index 
block 1

data 
block 0

data 
block 1

Secondary index on room name

HA4
HB1
KC
MVF23
MVH12

KBB056 KC Monday 08

KMB017 MVH12 Tuesday 08
KMB017 MVH12 Wednesday 15
TDA357 HA4 Monday 10
TDA357 HB1 Thursday 10
TMS145 KC Friday 08
UMF012 MVF23 Friday 13
UMF012 MVF23 Monday 13
UMF018 MVF23 Tuesday 10

Quiz!
• Indexes are incredibly useful (although they are 

not part of the SQL standard).
• Doing it wrong is costly.
• Requires knowledge about the internals of a 

DBMS.
– How is data stored? How large is a block?

• A DBMS should be able to decide better than 
the user what indexes are needed, from usage 
analysis.

So why don’t they??



6

Summary – indexes
• Indexes make certain lookups and joins more 

efficient.
– Disk block access matters.
– Multi-attribute indexes

• CREATE INDEX
• Usage analysis

– What are the expected operations?
– How much do they cost?

Σ(cost of operation)x(proportion of operations of that kind)

Non-natural keys

• A natural key is a key consisting of 
attributes in the domain model.

• In some cases, no suitable natural key 
exists.
– No suitably unique natural candidate key.
– Natural candidate key ”too large”.
– Natural candidate key ”not stable”.
– …

Quiz!
Listed is a personal number and a car registration 

number, both Swedish, as well as a post ID and 
a comment ID from Wordpress. Can you tell 
which is which?

861218-9324

AKW965

4126

1253

Artificial key

• Extra attribute added to a table with the 
purpose of being the key.
– Does not exist in ”reality”
– Can be verified for correctness
– Can be distinguished from artificial keys on 

other tables in database.
• Examples: 

– Personal numbers, car registration numbers, 
course codes, etc.

Surrogate key
• System-generated key to replace the actual key 

behind the covers.
– AUTO_INCREMENT, SEQUENCE, IDENTITY, …
– Totally unrelated to domain.
– NOT exposed to user modification – database 

consistency would be at great risk!
• Remember: From the database perspective, application 

programmers count as users!

– Example: post/comment IDs managed by Wordpress.

Exposed locators
• Unholy mix of artificial and surrogate keys:

– System-generated, non-verifiable value with no 
relation to data model (like a surrogate key).

– … but exposed to user (like an artificial key).

”[Exposed locators] are handy for lazy, non-RDBMS 
programmers who do not want to research or think! 
This is the worst way to program in SQL.”

Joe Celko, SQL programming guru
http://www.informationweek.com/software/business-intelligence/celko-on-sql-natural-artificial-and-surr/201806814



7

BEWARE!
• In parts of industry, there is an exaggerated belief in 

using surrogates, or even exposed locators.

• Don’t believe it! There is no one-size-fits-all solution to 
picking keys. Think for yourselves! You are better than 
them!

”In the real world, outside of school, it is considered 
insanity to have more than an integer as key.”

Old student

Advantages
• Non-natural keys can be more compact.

– Smaller references, smaller indexes.
– Faster comparisons, faster joins.

• Non-natural keys are immutable.
– Not tied to data in domain, so changes of the data will not cause 

key to change.
• (Recall: Oracle does not support ON UPDATE CASCADE)

– Applications never lose their reference to a particular row in the 
database.

• …

Disadvantages
• Non-natural keys may degrade performance.

– An extra key on a table requires an extra index to handle 
external lookups on the natural key

• extra disk space to store index
• modifications become more costly

– Reference to non-natural key means external lookups on the 
natural key in referencing table requires one or more extra joins.

• Non-natural keys may make maintenance harder.
– Harder to spot errors, in keys and in references.

• …

Quiz!
Find all lectures for course TDA357 in period 3. 

How costly is this operation?
Indexes for primary keysCourses(code, …)

GivenCourses(course, period, …)
course -> Courses.code

Lectures(course, period, weekday, …)
(course, period) -> 
GivenCourses.(course, period)

SELECT *
FROM   Lectures
WHERE  course = ’TDA357’

AND period = 3;

Costs k + 1 where
• k is the number of blocks holding 

rows matching the values
• 1 for reading index

Quiz!
Find all lectures for course TDA357 in period 3. 

How costly is this operation?
Indexes for primary and

natural keys
Courses(cid, code, …)
GivenCourses(gcid, course, period, …)

course -> Courses.cid

Lectures(lid, gcourse, weekday, …)
gcourse -> GivenCourses.gcid

SELECT *
FROM   Lectures, GivenCourses,

Courses
WHERE  gcourse = gcid

AND  course  = cid
AND  code    = ’TDA357’
AND  period  = 3;

Costs k + m + 1 + 3 where
• k is the number of blocks holding 

matching lectures
• m is the number of blocks holding 

matching given courses
• 1 is the block holding the matching

code (natural key so only one)
• 3 for reading three separate indexes

Quiz!
If surrogate keys can lead to more joins, but due to 

them being smaller, each join is faster – which 
has the bigger effect?

x =
y =

Program

Main 
memory

input()

output()

read()

write()

… but more joins 
mean more 
blocks read!

Faster comparisons 
mean faster joins…

In general, the 
number of disk 
block operations 
has much more 
impact than the 
speed of the 
comparisons! 
Beware!



8

Words of (my) advice
1. Use natural keys.
2. If none available, find or create an artificial key.

– For (strong and weak) entities only: all tables representing 
relationships will have natural (composite) keys.

– Also do this if natural key not suitably immutable.

3. If, and ONLY if, you notice a performance 
problem, surrogate keys might help.

– Remember to mark natural keys unique.
– Remember to create index for natural key lookups, if needed.
– Use views to hide the surrogate keys from users. Avoid 

exposed locators.
– Never include surrogates in e.g. E-R diagram – they are an 

implementation detail.

Denormalization

• ”Re-compose” decomposed tables or 
attributes, to avoid joining.
– Can think of this as pre-computing joins
– Trade-off: query speed vs. redundancy
– Are updates frequent?
– ”NULLs approach” for sub-entities and many-

to-at-most-one is a special case – both 
composed tables have the same key, so less
data will be stored.

Summary – optimization
• Indexes

– (often) speed up queries and joins
– make modifications more costly

• Natural keys, artificial keys, surrogate keys
– Avoid exposed locators!
– Know when to use what.

• Denormalization
– Can be a worthwhile trade-off.

Next lectures

• Lecture by Pablo Picazo-Sanchez
• Tomorrow Wednesday 7 December, 8:00

• Lecture by Jan Sparud (Recorded Future)
• Next week Tuesday 13 December 10:00


