Database Systems

Examples of database sizes

Digg: 3 TB — just to store the up/down votes
Twitter: 7 TB/day

Facebook:

— 50 TB — for the private messaging feature
— 1 PB photos

eBay: 2 PB data overall

RDBMS weakness

RDBMSs typically handle “massive” amounts of data in
complex domains, with frequent small read/writes.

— The archetypical RDBMS serves a bank.

Cassandra (NoSQL) can perform the "store” operation into a
50GB database 2500 faster than using MySQL

Data-intensive applications don’t fit this pattern:
— MASSIVE+++ amounts of data (e.g. eBay)

— Super-fast indexing of documents (e.g. Google)
— Serving pages on high-traffic websites (e.g. Facebook)

— Streaming media (e.g. Spotify)

Dec

1.
2.

3.
AS.
J 4.
6.

A 8.
$ 7.
A 10.

Rank
Dec Nov
2016 2016 2015

1. 1
2. 2
3. 3
- 4
5. 5.
6. 6
7. 7
8. 8
9. =
10. 10.

¥ 9.

Most used DBMS

DBMS

Oracle 3

MySQL E3

Microsoft SQL Server
PostgreSQL
MongoDB E3

DB2

Cassandra
Microsoft Access
Redis

SQLite

312 systems in ranking, December 2016

Score

Database Model o e

2016 2016
Relational DBMS 1404.40 -8.60
Relational DBMS 1374.41 +0.85
Relational DBMS 1226.66 +12.86
Relational DBMS 330.02 +4.20
Document store 328.68 +3.21
Relational DBMS 184.34 +2.89
Wide column store 134.28 +0.31
Relational DBMS 124.70 -1.27
Key-value store 119.89 +4.35
Relational DBMS 110.83 -1.17

Dec
2015

-93.15
+75.87
+103.50
+49.92
+27.29
-11.78
+3.44
-15.51
+19.36
+9.98

Non-relational databases

MapReduce framework
— Google originally; Hadoop (Apache), ...

Key-Value stores

— BigTable (Google), Cassandra (Apache), ...
Document stores

— CouchDB, MongoDB, SimpleDB, ...
Graph databases

— Neo4j, FlockDB, ...

Semi-structured databases
— (Native) XML databases, ...

Semi-structured data (SSD)

More flexible than the relational model.
— The type of each "entity” is its own business.

— Labels indicate meanings of substructures.

Semi-structured: it is structured, but not everything is
structured the same way!

Support for XML and XQuery in e.g. Oracle, DB2, SQL Server.

Special case: Document databases

Document stores

* Roughly: Key-Value stores where the values
are "documents”
— XML, JSON, mixed semistructured data sets

e Typically incorporate a query language for the

document type.
— See previous lecture for discussion on XML

guerying.

Document store implementations

* MongoDB
— Name short for "Humongous”
— Open source — owned by 10gen
— JSON(-like) semi-structured storage
— JavaScript query language
— Supports MapReduce for aggregations

* Apache CouchDB

SQL vs NoSQL

Terminology and Concepts Many concepts in MySQL have close analogs
in MongoDB. This table outlines some of the common concepts in each
system.

MySQL MongoDB
Table Collection
Row Document

Column Field

Joins Embedded documents, linking

Key-Value Stores

e Key-Value stores is a fancy name for persistant
maps (associative arrays, hash tables)

* Extremely simple interface — extremely
complex implementations.

e Values can be another {Key-value} documents

NoSQL — Data Example |

Customer 3 Entities....
a1, ins?
"timestamp": "2016.03.26-11.47.02.065", Joins:
"nid": "B1234455X",
name": "Alice”, Objects
"objects": [{
Factures “id": 1,
" cture™ [{ ”Concept": ”PenC”S",
"id" 1, "amount": 3.78}
"date": "26/03/2016", b
"total": 6.98 {
]} “id": 2,

"concept": "Folder”,
"amount": 3.20}

1]

NoSQL — Data Example Il

"id": 1,
"timestamp": "2016.03.26-11.47.02.065",
"nid": "B1234455X",
"name": "Alice",
"facture": [{
"id": 1,
"date": "26/03/2016",
"total": 6.98
"objects": [{
"id": 1,
"concept": "Pencils",

"amount": 3.78}

b

{

"id": 2,

"concept": "Folder",
"amount": 3.20}

}]
1]

SQL vs NoSQL

MySQL

INSERT INTO users (user_id,
age, status)
VALUES ('bcdool', 45, 'A')

SELECT % FROM users

UPDATE users SET status = 'C'
WHERE age > 25

MongoDB

db.users.insert({

}

user_id: 'bcd00l',
age: 45,
status: 'A’

)

db.users.find()

db.users.update(

}

{ age: { $gt: 25 }

{ $set: { status:

|C| } }’

)

{ multi: true }

SQL vs NoSQL

e Performance
— NoSQL

* Denormalized data

* No JOINs

* Complex information on a single query
— SQL

* Normalized schemas

* Redundance

 Complex queries to get complex data

SQL vs NoSQL

* Scaling

— NoSQL

* Easy to distribute
e Easy to spread the data

—SQL

e Still a challenge nowadays

Key-Value store implementations

e BigTable (Google)
— Sparse, distributed, multi-dimensional sorted map

— Proprietary — used in Google’s internals: Google Reader,
Google Maps, YouTube, Blogger, ...

e Cassandra (Apache)

— Originally Facebook’s PM database — now Open Source
(Apache top-level project)

— Used by Netflix, Digg, Reddit, Spotify, ...

MapReduce

No data model — all data stored in files

Operations supplied by user:
— Reader :: file = [input record]
— Map :: input record - <key, value>
— Reduce :: <key, [value]> - [output record]

— Writer :: [output record] = file
Everything else done behind the scenes:

)

— Consistency, atomicity, distribution and parallelism, “glue’

Optimized for broad data analytics

— Running simple queries over all data at once

MapReduce

SSSSSS

MapReduce implementations

The "secret” behind Google’s success
— Still going strong.
Hadoop (Apache)

— Open Source implementation of the MapReduce
framework

— Used by Ebay, Amazon, Last.fm, LinkedIn, Twitter,
Yahoo, Facebook internal logs (~¥15PB), ...

MongoDB
CouchDB

Graph Databases

 Data modeled in a graph structure
— Nodes = "entities”
— Properties = "tags”, attribute values
— Edges connect

* Nodes to nodes (relationships)
* Nodes to properties (attributes)

e Fast access to associative data sets

— All entities that share a common property
— Computing association paths

Graph database implementations

* Neodj
— Developed in Malmo
— Specialized query language: Cypher

 FlockDB

— Initially developed by Twitter to store user
relationships

— Apache licence

NoSQL — a hype?

=
=
2]
—
o
Technology Peak of Inflated Trough of Slope of Plateau of
Trigger Expectation Disillusionment Enlightenment Productivity
Maturity

e NoSQL is not “the right choice” just because it’s new!

e Relational DBMSs still rule at what they were first designed
for: efficient access to large amounts of data in complex
domains. That’s still the vast majority!

NoSQL summary

* Where is SQL ideal?
— Requirements can be identified in advance
— Data integrity is a must
— Standards-based proven technology.

e Where is NoSQL ideal?

— Unrelated / Indeterminate / evolving data
requirements

— Simpler objectives where time is a requirement
— Speed and scalability is a must

NoSQL summary

* NoSQL ="Not only SQL”

* Different data models optimized for different
tasks

— MapReduce, Key-Value stores, Document stores,
Graph databases, ...

e Typically:
+ efficiency, scalability, flexibility, fault tolerance

- (no) query language, (less) consistency

NoSQL summary

NoSQL SQL

Model Non-relational Relational
St data in JSON d ts, k I i .
ores data in ocuments, key/value pairs, Stores data in a table
wide column stores, or graphs
Data Offers flexibility as not every record needs to Great for solutions where every record has the
store the same properties same properties
. Addi ire alteri
New properties can be added on the fly iy 3 ew pro.p.erty may require altering
schemas or backfilling data
Relationships are often captured by Relationships are often captured in normalized
dencrmalizing data and presenting all data for model using joins to resolve references across
an object in a single record tables
Good f i-structured I ted
ood for semi-structured, complex, or neste Good for structured data
data
Schema Dynamic or flexible schemas Strict schema
t is schema- i the sch i s :
D'a e .agr?ostlc a.nd €SCNEMAE o hema must be maintained and kept in sync
dictated by the application. This allows for D0
- . S . between application and database
agility and highly iterative development
Transactions ACID transaction support varies per solution Supports ACID transactions
i I i :
Consnftelrc.y & Eventua. to strong c.on5|stency supported, T sl
Availability depending on solution
Consistency, availability, and performance can : L -
be traded to meet the needs of the application C:;(s)lrstr::nccyels B et e
(CAP theorem) E
Insert and update performance is dependent
_ . upon how fast a write is committed, as strong
Performance can be maximized by reducing . .
Performance . . consistency is enforced. Perfformance can be
consistency, if needed
maximized by using scaling up available
resources and using in-memory structures.
All information about an entity is typically in a Information about an entity may be spread
single record, so an update can happen in one across many tables or rows, requiring many
operation joins to complete an update or a query
Scale Scaling is typically achieved horizontally with Scaling is typically achieved vertically with more

data partitioned to span servers

SENVEr resources

The End

