
1

Database Applications

SQL/PSM
Embedded SQL

JDBC

Course Objectives

Design

Construction

Applications

Usage

Course Objectives – Interfacing

When the course is through, you should

– Know how to connect to and use a database

from external applications.

• … using JDBC

External applications

• Normally, databases are not manipulated
through a generic SQL interpreter (like

iSQL*Plus). Rather they are used as a

building block in larger applications.

• SQL is not well suited for building full-

scale applications – we need more

computational power!

– Control structures, ordinary arithmetic,

input/output, etc.

Mixing two worlds

• Mixing SQL with ordinary programming

constructs is not immediately straightforward.

– ”The impedance mismatch problem” – differing data

models

• SQL uses the relational data model.

• Ordinary imperative languages cannot easily model sets and

relations.

• Various approaches to mixing SQL and

programming solve this problem more or less

gracefully.

Two approaches

• We have SQL for manipulating the
database. To be able to write ordinary

applications that use SQL, we can either

– Extend SQL with ”ordinary” programming

language constructs.

• SQL/PSM, PL/SQL

– Extend an ordinary programming language to

support database operations through SQL.

• Embedded SQL, SQL/CLI (ODBC), JDBC, …

2

SQL/PSM

• PSM = ”persistent, stored modules”

• Standardized extension of SQL that allows

us to store procedures and functions as

database schema elements.

• Mixes SQL with conventional statements

(if, while, etc.) to let us do things that we
couldn’t do in SQL alone.

– PL/SQL is Oracle-specific, and very similar to

PSM (only minor differences).

Basic PSM structure

CREATE PROCEDURE name (

parameter list)

local declarations

body;

To create a procedure:

CREATE FUNCTION name (

parameter list)

RETURNS type

local declarations

body;

To create a function:

Example:

CREATE PROCEDURE AddDBLecture (

IN day VARCHAR(9),

IN hour INT,

IN room VARCHAR(30)

)

INSERT INTO Lectures

VALUES (’TDA356’, 2, day, hour, room);

Used like a statement:

CALL AddDBLecture(’Monday’, 13, ’VR’);

Parameters

• Unlike the usual name-type pairs in
languages like C, PSM uses mode-name-

type triples, where mode can be:

– IN: procedure uses the value but does not

change it.

– OUT: procedure changes the value but does

not read it.

– INOUT: procedure both uses and changes the

value.

Procedure body

• The body can consist of any PSM
statement, including

– SQL statements (INSERT, UPDATE,

DELETE).

– setting the values of variables (SET).

– calling other procedures (CALL)

– …

More complex example:

CREATE FUNCTION RateCourse (

IN c CHAR(6)) RETURNS CHAR(10)

DECLARE totalNrSt INTEGER;

BEGIN

SET totalNrSt =

(SELECT SUM(nrStudents)

FROM GivenCourses

WHERE course = c);

IF totalNrSt < 50 THEN RETURN ’unpopular’

ELSEIF totalNrSt < 150 THEN RETURN ’average’

ELSE RETURN ’popular’

END IF;

END;

DECLARE used to

declare local variables.

Number of students

reading course c over
the whole year.

BEGIN and END used

to group statements
(cf. { … } in e.g. Java)

Used whenever we can use a value:

SELECT code, RateCourse(code)

FROM Courses;

3

Setting values of variables

• Two ways of assigning values to variables:

– SET works like ”ordinary” assignment:

– We can also assign values as part of a query using
SELECT … INTO:

SET totalNrSt = (SELECT SUM(nrStudents)

FROM GivenCourses

WHERE course = c);

SELECT SUM(nrStudents), AVG(nrStudents)

INTO totalNrSt, avgNrSt

FROM GivenCourses

WHERE course = c;
Using SELECT … INTO we

can assign multiple values at
the same time, if the result of

the query is a tuple.

Control Flow in SQL/PSM

• SQL/PSM has conditionals and loops like an imperative
programming language:

– Conditional:

• IF … THEN … ELSEIF … ELSE … END IF;

– Loops:

• WHILE … DO … END WHILE;

• REPEAT … UNTIL … END REPEAT;

• LOOP … END LOOP;

– Loops can be named by prepending a name and a colon to the

loop. Exiting can then be done explicitly:

loop1: LOOP

…

LEAVE loop1;

…

END LOOP;

LOOP works like while (true) …

Returning values

• The keyword RETURN sets the return value

of a function.

– Unlike e.g. Java, RETURN does not terminate

the execution of the function.

– Example:

CREATE FUNCTION ToRating (IN nrSt INT)

RETURNS CHAR(10)

BEGIN

IF nrSt < 50 THEN RETURN ’unpopular’ END IF;

RETURN ’popular’;

END;
Returning the value doesn’t happen until END,

so the result will always be ’popular’.

”Exceptions” in SQL/PSM

• SQL/PSM defines a magical variable
SQLSTATE containing a 5-digit string.

• Each SQL operation returns a status code

into this variable, thus indicating if
something goes wrong.

– Example:

• 00000 = ”OK”

• 02000 = ”No tuple found”

Handling exceptions

• We can declare condition indicators for
when something goes wrong (or right):

• These can be used as ordinary tests, or

using exception handlers:

DECLARE NotFound CONDITION FOR SQLSTATE ’02000’;

IF NotFound RETURN NULL END IF;

DECLARE EXIT HANDLER FOR NotFound RETURN NULL;

More complex example, with exceptions:

CREATE FUNCTION RateCourse (

IN c CHAR(6)) RETURNS CHAR(10)

DECLARE totalNrSt INTEGER;

DECLARE NotFound CONDITION FOR SQLSTATE ’02000’;

BEGIN

DECLARE EXIT HANDLER FOR NotFound RETURN NULL;

SET totalNrSt =

(SELECT SUM(nrStudents)

FROM GivenCourses

WHERE course = c);

IF totalNrSt < 50 THEN RETURN ’unpopular’

ELSEIF totalNrSt < 150 THEN RETURN ’average’

ELSE RETURN ’popular’

END IF;

END;

If we should end up in a state

where Not_Found is true, i.e.

the course c doesn’t exist,

we return NULL.

4

Quiz!

We can use queries that return a single
value, or a single tuple (using SELECT …

INTO), but how use queries that return

more than one row?

Key idea is to not return the rows themselves, but
rather a pointer that can be moved from one tuple

to another (cf. iterators in Java).
SQL/PSM calls these cursors.

Cursors

• Declaring
– DECLARE name CURSOR FOR query

• Initializing
– OPEN name

• Taking values from
– FETCH name INTO variables

• Ending
– CLOSE name

Example (declaration part):

CREATE PROCEDURE FixEarlyLectures (

IN theCourse CHAR(6),

IN thePeriod INT)

DECLARE theHour INT;

DECLARE theDay VARCHAR(9);

DECLARE theRoom VARCHAR(30);

DECLARE NotFound CONDITION FOR

SQLSTATE ’02000’;

DECLARE c CURSOR FOR

(SELECT hour, weekday, room

FROM Lectures

WHERE course = theCourse

AND period = thePeriod);

Used to hold values

fetched by the cursor.

Find all lectures of

the given course.

If it does not lead to a clash, move

any course that is scheduled early to
10 o’clock instead.

What does it do?

Example continued (logic part):

BEGIN

OPEN c;

fixLoop: LOOP

FETCH c INTO theHour, theDay, theRoom;

IF NotFound THEN LEAVE fixLoop END IF;

IF theHour < 10 THEN

IF NOT EXISTS

(SELECT * FROM Lectures

WHERE period = thePeriod AND day = theDay

AND hour = 10 AND room = theRoom)

THEN

UPDATE Lectures SET hour = 10

WHERE course = theCourse AND day = theDay

AND period = thePeriod AND room = theRoom;

END IF;

END IF;

END LOOP;

CLOSE c;

END;

Check if last FETCH

failed to find a tuple.

Summary SQL/PSM

• Procedures, functions
– Parameters, local declarations

– Returning values

– Exceptions and handling

– Calling (CALL procedures, use functions as values)

• Assigning to variables
– SET

– SELECT … INTO …

• Cursors
– Declaring, fetching values

Two approaches

• We have SQL for manipulating the
database. To be able to write ordinary

applications that use SQL, we can either

– Extend SQL with ”ordinary” programming

language constructs.

• SQL/PSM, PL/SQL

– Extend an ordinary programming language to

support database operations through SQL.

• Embedded SQL, SQL/CLI (ODBC), JDBC, …

5

Yet again two approaches

• Extending a programming language with support

for database manipulation can be done in two

ways:

– Embedding SQL within the source code of the host
language.

• Embedded SQL

– Adding native mechanisms to the host language for
interfacing to a database

• Call-level: SQL/CLI (C), JDBC (Java), many more…

• High-level: HaskellDB, LINQ (C#)

Embedded SQL

• Key idea: Use a preprocessor to turn SQL
statements into procedure calls within the
host language.

• All embedded SQL statements begin with
EXEC SQL, so the preprocessor can find
them easily.

• By the SQL standard, implementations
must support one of: ADA, C, Cobol,
Fortran, M, Pascal, PL/I.

Shared variables

• To connect the SQL parts with the host
language code, some variables must be
shared.
– In SQL, shared variables are preceded by a

colon.

– In the host language they are just like any
other variable.

• Declare shared variables between

EXEC SQL BEGIN DECLARE SECTION;

/* declarations go here */

EXEC SQL END DECLARE SECTION;

Example (in C):

EXEC SQL BEGIN DECLARE SECTION;

char theCourse[7];

int thePeriod;

char theTeacher[41];

EXEC SQL END DECLARE SECTION;

/* Read in values for theCourse and thePeriod

from stdin or somewhere else. */

EXEC SQL SELECT teacher INTO :theTeacher

FROM GivenCourses

WHERE course = :theCourse

AND period = :thePeriod;

/* Do something with theTeacher */

SELECT … INTO

just like in SQL/PSM

41-char array to

hold 40 chars +
end marker.

Embedded queries

• Same limitations as in SQL/PSM:

– SELECT … INTO for a query guaranteed to

return a single tuple.

– Otherwise, use cursors.

• Small syntactic difference between SQL/PSM and

Embedded SQL cursors, but the key ideas are
identical.

Example (in C again):

EXEC SQL BEGIN DECLARE SECTION;

char theCourse[7];

char theName[51];

EXEC SQL END DECLARE SECTION;

EXEC SQL DECLARE c CURSOR FOR

(SELECT * FROM Courses);

EXEC SQL OPEN CURSOR c;

while(1){

EXEC SQL FETCH c INTO :theCourse, :theName;

if (NOT FOUND) break;

/* Print theCourse and

theName to stdout */

}

EXEC SQL CLOSE CURSOR c;

Only difference from

SQL/PSM is the word
CURSOR when opening

and closing a cursor.

Predefined C macro:
#define NOT FOUND =

strcmp(SQLSTATE, ”02000”)

6

Need for dynamic SQL

• Queries and statements with EXEC SQL
can be compiled into calls for some library

in the host language.

• However, we may not always know at
compile time in what ways we want to

manipulate the database. What to do

then?

Dynamic SQL

• We can prepare queries at compile time
that will be instantiated at run time:

– Preparing:

– Executing:

– Prepare once, execute many times.

EXEC SQL PREPARE name FROM query-string;

EXEC SQL EXECUTE name;

Example: A generic query interface

EXEC SQL BEGIN DECLARE SECTION;

char theQuery[MAX_LENGTH];

EXEC SQL END DECLARE SECTION;

while(1){

/* issue SQL prompt */

/* read user query into array theQuery */

EXEC SQL PREPARE q FROM :theQuery;

EXEC SQL EXECUTE q;

}

Summary: Embedded SQL

• Write SQL inline in host language code.

– Prepend SQL with EXEC SQL

• Shared variables.

– Prepend with colon in SQL code.

• No inherent control structures!

– Uses control structures of the host language.

• Compiled into procedure calls of the host

language.

JDBC

• JDBC = Java DataBase Connectivity

• JDBC is Java’s call-level interface to SQL

DBMS’s.

– A library with operations that give full access

to relational databases, including:

• Creating, dropping or altering tables, views, etc.

• Modifying data in tables

• Querying tables for information

• …

JDBC Objects

• JDBC is a library that provides a set of classes

and methods for the user:

– DriverManager

• Handles connections to different DBMS. Implementation

specific.

– Connection

• Represents a connection to a specific database.

– Statement, PreparedStatement

• Represents an SQL statement or query.

– ResultSet

• Manages the result of an SQL query.

7

Registering a driver

• The DriverManager is a global class

with static functions for loading JDBC

drivers and creating new connections.

• Load the Oracle JDBC driver:

– Will be done for you on the lab.

DriverManager.registerDriver(

new oracle.jdbc.driver.OracleDriver());

Getting connected

• A Connection object represents a

connection to a specific database:

– Will also be done for you on the lab, except username

and password.

private static final String HOST =

”delphi.medic.chalmers.se”;

private static final String PORT = ”1521”;

private static final String SID = ”medic1”;

private static final String USER = username;

private static final String PWD = password;

Connection myCon =

DriverManager.getConnection(”jdbc:oracle:thin:@” +

HOST + ”:” + PORT + ”:” + SID, USER, PWD);

Statements

• A Statement object represents an SQL

statement or query, including schema-

altering statements.

• A Statement object represents one

statement at a time, but may be reused.

Statement myStmt = myCon.createStatement();

A statement is associated

with a particular connection

Using statements

• Statement objects have two fundamental
methods:
– ResultSet executeQuery(String query)

• Given a string, which must be a query, run that
query against the database and return the resulting
set of rows.

– int executeUpdate(String update)

• Given a string, which must be a non-query, run
that update against the database.

• Note that a JDBC update is not an SQL update,
but rather an SQL modification (which could be an
update).

Example:

String code, name;

/* Get values for code and name from user */

String myInsertion =

”INSERT INTO Courses VALUES (’” +

code + ”’, ’” + name + ”’)”;

Statement myStmt = myCon.createStatement();

myStmt.executeUpdate(myInsertion);

Note the inserted

single quotes.

Has return type int

(the number of rows
that were changed)

Quiz!

What’s wrong with the program below?

String code;

/* Get value for code from user */

String myQuery =

”SELECT name” +

”FROM Courses” +

”WHERE code = ” + code;

Statement myStmt = myCon.createStatement();

ResultSet rs = myStmt.executeQuery(myQuery);

/* Do something with result. */

No spaces!
”SELECT nameFROM

CoursesWHERE code = …”

No single-quotes either.

8

Exceptions in JDBC

• Just about anything can go wrong!

– Syntactic errors in SQL code.

– Trying to run a non-query using executeQuery.

– Permission errors.

– …

• Catch your exceptions!

try {

// database stuff goes in here

} catch (SQLException e) { … }

Executing queries

• The method executeQuery will run a

query against the database, producing a

set of rows as its result.

• A ResultSet object represents an interface
to this resulting set of rows.

– Note that the ResultSet object is not the set

of rows itself – it just allows us to access the

set of rows that is the result of a query on
some Statement object.

ResultSet

• A ResultSet is very similar to a cursor in

SQL/PSM or Embedded SQL.

– boolean next()

• Advances the ”cursor” to the next row in the set, returning

false if no such rows exists, true otherwise.

– X getX(i)

• X is some type, and i is a column number (index from 1).

• Example:

returns the integer value of the first column of the current
row in the result set rs.

rs.getInt(1)

ResultSet is not a result set!

• Remember a ResultSet is more like a
cursor than an actual set – it is an
interface to the rows in the actual result
set.

• A Statement object can have one result
at a time. If the same Statement is used
again for a new query, any previous
ResultSet for that Statement will no
longer work!

course per teacher

TDA357 2 Niklas Broberg

TDA357 4 Rogardt Heldal

TIN090 1 Devdatt Dubhashi

code name

TDA357 Databases

TIN090 Algorithms

Courses GivenCourses

TDA357 Databases

Period 2: Niklas Broberg

Period 4: Rogardt Heldal

TIN090 Algorithms

Period 1: Devdatt Dubhashi

Quiz!
What will the result be?

Statement myStmt = myCon.createStatement();

ResultSet rs =

myStmt.executeQuery(”SELECT * FROM Courses”);

while (rs.next()) {

String code = rs.getString(1);

String name = rs.getString(2);

System.out.println(name + ” (” + code + ”)”);

ResultSet rs2 = myStmt.executeQuery(

”SELECT teacher FROM GivenCourses ” +

”WHERE course = ’” + code + ”’”);

while (rs2.next())

System.out.println(” ” + rs2.getString(1));

}
Due to overuse of the same Statement, only the first

course will be printed, with teachers. After the second
query is executed, rs.next()will return false.

9

Two approaches

• If we need information from more than one table,

there are two different programming patterns for

doing so:

– Joining tables in SQL

• Join all the tables that we want the information from in a

single query (like we would in SQL), get one large result set

back, and use a ResultSet to iterate through this data.

– Use nested queries in Java

• Do a simple query on a single table, iterate through the
result, and for each resulting row issue a new query to the

database (like in the example on the previous page, but

without the error).

Example: Joining in SQL

Statement myStmt = myCon.createStatement();

ResultSet rs =

myStmt.executeQuery(

”SELECT code, name, period, teacher ” +

”FROM Courses, GivenCourses ” +

”WHERE code = course ” +

”ORDER BY code, period”);

String currentCourse, course;

while (rs.next()) {

course = rs.getString(1);

if (!course.equals(currentCourse))

System.out.println(rs.getString(2));

System.out.println(” Period ” + rs.getInt(3) +

”: ” + rs.getString(4));

currentCourse = course;

}

Compare with previous row

to see if this is a new course.
If it is, print its name.

Example: Using nested queries in Java

Statement cStmt = myCon.createStatement();

Statement gcStmt = myCon.createStatement();

ResultSet courses = cStmt.executeQuery(

”SELECT code, name ” +

”FROM Courses ” +

”ORDER BY code”);

while (courses.next()) {

String course = courses.getString(1);

System.out.println(courses.getString(2));

ResultSet gcourses = gcStmt.executeQuery(

”SELECT period, teacher ” +

”FROM GivenCourses

”WHERE course = ’” + course + ”’ ” +

”ORDER BY period”);

while (gcourses.next()) {

System.out.println(” Period ” + gcourses.getInt(1) +

”: ” + gcourses.getString(2));

}

}

Find the given

courses for each
course

separately with

an inner query.

Comparison

• Joining in SQL

– Requires only a single query.

– Everything done in the DBMS, which is good at
optimising.

• Nested queries

– Many queries to send to the DBMS

• communications/network overhead

• compile and optimise many similar queries

– Logic done in Java, which means optimisations must
be done by hand.

– Limits what can be done by the DBMS optimiser.

PreparedStatement

• Some operations on the database are run
multiple times, with the same or only slightly
different data.
– Example: asking for information from the same table,

perhaps with different tests, or with a different
ordering.

• We can create a specialized
PreparedStatement with a particular
associated query or modification.
PreparedStatement myPstmt =

myCon.prepareStatement(”SELECT * FROM Courses”);

Parametrized prepared statements

• We can parametrize data in a statement.

– Data that could differ is replaced with ? in the

statement text.

– ? parameters can be instantiated using

functions setX(int index, X value).

PreparedStatement myPstmt =

myCon.prepareStatement(

”INSERT INTO Courses VALUES (?,?)”);

myPstmt.setString(1, ”TDA356”);

myPstmt.setString(2, ”Databases”);

10

Summary JDBC

• DriverManager

– Register drivers, create connections.

• Connection

– Create statements or prepared statements.

– Close when finished.

• Statement

– Execute queries or modifications.

• PreparedStatement

– Execute a particular query or modification, possibly
parametrized.

• ResultSet

– Iterate through the result set of a query.

SQL Injection

http://xkcd.com/327/

http://www.val.se/val/val2010/handskrivna/handskrivna.skv

K;13;Hallands län;80;Halmstad;01;Halmstads västra

valkrets;904;Söndrum 4;pwn DROP TABLE VALJ;1

Quiz!

Write a query in SQL that returns the value 1.

SELECT 1 FROM

(SELECT COUNT(*) FROM T);

Assuming we have a table T, we could

write it as

We must use an aggregation, otherwise we cannot ensure that we

get only one value as the result.

Oracle recognizes this problem and supplies the table Dual. This
table has one column dummy, and one row with the value ’X’. Since it
is guaranteed to have only one row in it, we can write the above as

SELECT 1 FROM Dual;

Lab Part IV - Interfacing

• Write a Java application that uses JDBC to
connect to and use the database that you

created in part II.

• Your application should make use of the
views and triggers that you created in

parts II and III.

• Start from a stub application.

Lab Part IV - Interfacing

• Hand in (yes, hand in!):

– Your Java source code

• The fourth part of the lab will be accepted or

rejected at the lab supervision sessions!

– You will show us your running application, we will

stress test it, and ask to see some parts of the source
code.

– You should still hand in your source code!

• Deadline: Friday 19 December (at the

supervision session)

Final deadline!

• The final, hard deadline for all parts of the
lab is Friday 19 December, at the

supervision session.

– If your lab is not accepted by the deadline,

you will be asked to come back to finish it in

period 3.

