
1

Database Usage
(and Construction)

More SQL Queries and Relational Algebra

Tests on groups

• Aggregations can’t be put in the WHERE clause
– they’re not functions on rows but on groups.

• Sometimes we want to perform tests on the
result of an aggregation.

– Example: List all teachers who have an average
number of students of >100 in their courses.

• SQL allows us to put such tests in a special

HAVING clause after GROUP BY.

Quiz!

List all teachers who have an average
number of students of >100 in their
courses.

SELECT teacher

FROM GivenCourses

GROUP BY teacher

HAVING AVG(nrStudents) > 100;

Example

code period teacher #students

TDA357 2 Niklas Broberg 130

TIN090 1 Devdatt Dubhashi 95

TDA357 4 Rogardt Heldal 135

TDA590 2 Rogardt Heldal 70

SELECT teacher

FROM GivenCourses

GROUP BY teacher

HAVING AVG(nrStudents) > 100;

AVG(nrSt.)

130

95

102.5

Quiz!

• There is no correspondence in relational
algebra to the HAVING clause of SQL.
Why?

– Because we can express it with an extra
renaming and a selection. Example:

SELECT teacher

FROM GivenCourses

GROUP BY teacher

HAVING AVG(nrStudents) > 100;πteacher (σavgSt > 100(γteacher, AVG(nrStudents) as avgSt(GivenCourses)))
Sorting relations

• Relations are unordered by default.

• Operations could potentially change any existing
ordering.

– Sort relation R on attributes X.

– Ordering only makes sense at the top level, or if only
a given number of rows are sought, e.g. the top 5.

– Oracle: Use the implicit attribute rownum to limit how

many rows should be used.

• τ = tau = greek letter t = sort (s is taken)

τX(R) ORDER BY X [ASC]

2

Example

SELECT *

FROM Courses

ORDER BY name;

code name

TIN090 Algorithms

TDA357 Databases

TDA590 OOSD

SELECT-FROM-WHERE-
GROUPBY-HAVING-ORDERBY

• Full structure of an SQL query:
SELECT attributes

FROM tables

WHERE tests over rows

GROUP BY attributes

HAVING tests over groups

ORDER BY attributes

SELECT X,G

FROM T

WHERE C

GROUP BY Y

HAVING D

ORDER BY Z;

τZ’(πX,G’(σD’(γY,G’(σC(T)))))
Only the SELECT

and FROM clauses
must be included.

X must be a subset of Y.
Primes ’ mean we need some renaming.

Example:
SELECT name, AVG(nrStudents) AS avSt

FROM Courses, GivenCourses

WHERE code = course

GROUP BY code, name

HAVING AVG(nrStudents) > 100

ORDER BY avSt;

course per teacher nrSt

TDA357 2 Niklas Broberg 130

TDA357 4 Rogardt Heldal 95

TIN090 1 Devdatt Dubhashi 62

code name

TDA357 Databases

TIN090 Algorithms

Courses

GivenCourses

τavSt(πname, avSt(σavSt > 100(γcode, name, AVG(nrStudents)→avSt(σcode = course(Courses x GivenCourses)))))
Example:
SELECT name, AVG(nrStudents) AS avSt

FROM Courses, GivenCourses
WHERE code = course

GROUP BY code, name

HAVING AVG(nrStudents) > 100

ORDER BY avSt;

code name course per teacher nrSt

TDA357 Databases TDA357 2 Niklas Broberg 130

TDA357 Databases TDA357 4 Rogardt Heldal 95

TDA357 Databases TIN090 1 Devdatt Dubhashi 62

TIN090 Algorithms TDA357 2 Niklas Broberg 130

TIN090 Algorithms TDA357 4 Rogardt Heldal 95

TIN090 Algorithms TIN090 1 Devdatt Dubhashi 62

τavSt(πname,avSt(σavSt>100(γcode,name,AVG(nrStudents)→avSt(σcode=course(Courses x GivenCourses)))))
Example:
SELECT name, AVG(nrStudents) AS avSt

FROM Courses, GivenCourses

WHERE code = course
GROUP BY code, name

HAVING AVG(nrStudents) > 100

ORDER BY avSt;

code name course per teacher nrSt

TDA357 Databases TDA357 2 Niklas Broberg 130

TDA357 Databases TDA357 4 Rogardt Heldal 95

TDA357 Databases TIN090 1 Devdatt Dubhashi 62

TIN090 Algorithms TDA357 2 Niklas Broberg 130

TIN090 Algorithms TDA357 4 Rogardt Heldal 95

TIN090 Algorithms TIN090 1 Devdatt Dubhashi 62

τavSt(πname,avSt(σavSt>100(γcode,name,AVG(nrStudents)→avSt(σσσσcode=coursecode=coursecode=coursecode=course((((Courses x GivenCourses))))))))code name course per teacher nrSt

TDA357 Databases TDA357 2 Niklas Broberg 130

TDA357 Databases TDA357 4 Rogardt Heldal 95

TIN090 Algorithms TIN090 1 Devdatt Dubhashi 62

Example:
SELECT name, AVG(nrStudents) AS avSt

FROM Courses, GivenCourses

WHERE code = course

GROUP BY code, name
HAVING AVG(nrStudents) > 100

ORDER BY avSt;

τavSt(πname,avSt(σavSt>100(γcode,name,AVG(nrStudents)→avSt((((σcode=course(Courses x GivenCourses))))))))
code name course per teacher nrSt

TDA357 Databases TDA357 2 Niklas Broberg 130

TDA357 Databases TDA357 4 Rogardt Heldal 95

TIN090 Algorithms TIN090 1 Devdatt Dubhashi 62

AVG(nrSt)

112.5

62

code name

TDA357 Databases

TIN090 Algorithms

AVG(nrSt)

112.5

62

3

Example:
SELECT name, AVG(nrStudents) AS avSt

FROM Courses, GivenCourses

WHERE code = course

GROUP BY code, name

HAVING AVG(nrStudents) > 100
ORDER BY avSt;

τavSt(πname,avSt(σσσσavSt>100avSt>100avSt>100avSt>100((((γcode,name,AVG(nrStudents)→avSt(σcode=course(Courses x GivenCourses))))))))
code name

TDA357 Databases

TIN090 Algorithms

AVG(nrSt)

112.5

62

code name

TDA357 Databases

AVG(nrSt)

112.5

Example:
SELECT name, AVG(nrStudents) AS avSt
FROM Courses, GivenCourses

WHERE code = course

GROUP BY code, name

HAVING AVG(nrStudents) > 100

ORDER BY avSt;

τavSt(ππππname,avStname,avStname,avStname,avSt((((σavSt>100(γcode,name,AVG(nrStudents)→avSt(σcode=course(Courses x GivenCourses))))))))
code name

TDA357 Databases

AVG(nrSt)

112.5

name avSt

Databases 112.5

Example:
SELECT name, AVG(nrStudents) AS avSt

FROM Courses, GivenCourses

WHERE code = course

GROUP BY code, name

HAVING AVG(nrStudents) > 100

ORDER BY avSt;

τavSt((((πname,avSt(σavSt>100(γcode,name,AVG(nrStudents)→avSt(σcode=course(Courses x GivenCourses))))))))name avSt

Databases 112.5

Relations as sets

• Relations are sets of tuples.

• Set theory has plenty to borrow from:

– Some we’ve seen, like ∊ (IN).– More operators:
• U (union)• ∩ (intersection)

• ∖ (set difference)

Set operations
• Common set operations in SQL

– UNION: Given two relations R1 and R2, add them
together to form one relation R1 U R2.

– INTERSECT: Given two relations R1 and R2, return all
rows that appear in both of them, forming R1 ∩ R2.

– EXCEPT: Given two relations R1 and R2, return all
rows that appear in R1 but not in R2, forming R1 ∖ R2.

• Oracle calls this operation MINUS.

• All three operations require that R1 and R2 have
(almost) the same schema.
– Attribute names may vary, but number, order and

types must be the same.

Quiz!
List all courses and the periods they are given in.

Courses that are not scheduled for any period
should also be listed, but with NULL in the field

for period. You must use a set operation.

(SELECT course, period

FROM GivenCourses)

UNION

(SELECT code, NULL

FROM Courses

WHERE code NOT IN

(SELECT course

FROM GivenCourses));

4

code period teacher #students

TDA357 2 Niklas Broberg 130

TDA357 4 Rogardt Heldal 135

TIN090 1 Devdatt Dubhashi 95

TDA590 2 Rogardt Heldal 70

code name

TIN090 Algorithms

TDA590 OOS

TDA357 Databases

TDA100 AI

(SELECT code, period

FROM GivenCourses)

UNION

(SELECT code, NULL

FROM Courses

WHERE code NOT IN

(SELECT code

FROM GivenCourses));

code period

TDA357 2

TDA357 4

TIN090 1

TDA590 2

code NULL

TDA100 Null

(SELECT code, period

FROM GivenCourses)

UNION

(SELECT code, NULL

FROM Courses

WHERE code NOT IN

(SELECT code

FROM GivenCourses));

U

Result

code period

TDA357 2

TDA357 4

TIN090 1

TDA590 2

TDA100

Not sets but bags!

• In set theory, a set cannot contain
duplicate values. Either a value is in the
set, or it’s not.

• In SQL, results of queries can contain the
same tuples many times.
– Done for efficiency, eliminating duplicates is

costly.

• A set where duplicates may occur is called
a bag, or multiset.

Controlling duplicates

• Queries return bags by default. If it is important
that no duplicates exist in the set, one can add
the keyword DISTINCT.
– Example:

• DISTINCT can also be used with aggregation
functions.
– Example:

SELECT DISTINCT teacher

FROM GivenCourses;

SELECT COUNT(DISTINCT teacher)

FROM GivenCourses;

code period teacher #students

TDA357 2 Niklas Broberg 130

TDA357 4 Rogardt Heldal 135

TIN090 1 Devdatt Dubhashi 95

TDA590 2 Rogardt Heldal 70

SELECT teacher

FROM GivenCourses;

teacher

Niklas Broberg

Rogardt Heldal

Devdatt Dubhashi

Rogardt Heldal

5

code period teacher #students

TDA357 2 Niklas Broberg 130

TDA357 4 Rogardt Heldal 135

TIN090 1 Devdatt Dubhashi 95

TDA590 2 Rogardt Heldal 70

SELECT DISTINCT teacher

FROM GivenCourses;

teacher

Niklas Broberg

Rogardt Heldal

Devdatt Dubhashi

code period teacher #students

TDA357 2 Niklas Broberg 130

TDA357 4 Rogardt Heldal 135

TIN090 1 Devdatt Dubhashi 95

TDA590 2 Rogardt Heldal 70

SELECT COUNT (teacher)

FROM GivenCourses;

COUNT(teacher)

4

SELECT COUNT(DISTINCT teacher)

FROM GivenCourses;
COUNT(DISTINCT teacher)

3

Duplicate elimination

• Duplicate elimination = Given relation R, remove
all duplicate rows.

– Remove all duplicates from R.

• δ = delta = greek letter d = duplicate elimination

δ(R)
SELECT DISTINCT X

FROM R

WHERE C;

δ(πX(σC(R)))
Retaining duplicates

• Set operations eliminate duplicates by default.
– For pragmatic reasons – to compute either

intersection or set difference efficiently, the relations
need to be sorted, and then eliminating duplicates
comes for free.

• If it is important that duplicates are considered,
one can add the keyword ALL.
– Example:

(SELECT room

FROM Lectures)

EXCEPT ALL

(SELECT name

FROM Rooms);

All rooms appear once in Rooms. The set
difference will remove each room once
from the first set, thus leaving those rooms
that have more than one lecture in them.

Doesn’t work in Oracle, there
ALL only works for UNION.

Summary – relations as sets

• Set operations can be used on relations

– Requires the operands to have the same arity
(number of attributes) and types must match.

• UNION

• INTERSECT

• EXCEPT (MINUS)

• Relations are treated as bags in most queries,

but as sets in the result of a set operation.

– To eliminate duplicates, use DISTINCT.

– To retain duplicates for set operations, use ALL.

Common idiom

List all courses and the periods they are given in.
Courses that are not scheduled for any period
should also be listed, but with NULL in the field

for period. You must use a set operation.

(SELECT code, period

FROM Courses, GivenCourses

WHERE code = course)

UNION

(SELECT code, NULL

FROM Courses

WHERE code NOT IN

(SELECT course

FROM GivenCourses));

First compute those
that fit in the join,
then union with
those that don’t.

6

Summary
SQL and Relational Algebra

• SQL is based on
relational algebra.
– Operations over relations

• SELECT-FROM-
WHERE-GROUPBY-
HAVING-ORDERBY

• Operations for:
– Selection of rows (σ)

– Projection of columns (π)

– Combining tables
• Cartesian product (x)

• Join, natural join, outer
join (⋈⋈⋈⋈C, ⋈⋈⋈⋈, ⋈⋈⋈⋈)

– Grouping and aggregation

• Grouping (γ)

• SUM, AVG, MIN, MAX,
COUNT

– Set operations
• Union (∪)

• Intersect (∩)

• Set difference (∖)
– Miscellaneous

• Renaming (ρ)

• Duplicate elimination (δ)

• Sorting (τ)

• Subqueries
– Sequencing

– (Views)

˚

Course Objectives – Usage

When the course is through, you should

– Know how to query a database for relevant
data using SQL

– Know how to change the contents of a
database using SQL

”Add a course ’Databases’ with course code ’TDA357’,
given by …”

”Give me all info regarding the course ’TDA357’”

Exam – Relational Algebra

”Here is a schema for a database over persons and their
employments. …”

• What does this relational-algebraic expression
compute? …

• Translate this relational-algebraic expression to SQL.

• Write a relational-algebraic expression that computes
… .

• Translate this SQL query to a relational-algebraic
expression.

Exam – SQL DML

”The grocery store wants your help in getting proper
information from their database. …”

• Write a query that finds the total value of the entire
inventory of the store.

• List all products with their current price, i.e. the
discount price where such exists, otherwise the base
price.

Database Construction
(and Usage)

More on Modifications and Table Creation

Assertions

Triggers

Summary – Modifications

• Modifying the contents of a database:

– Insertions
INSERT INTO tablename VALUES tuple

– Deletions
DELETE FROM tablename WHERE test over rows

– Updates
UPDATE tablename

SET attribute = value

WHERE test over rows

7

Insertions with queries

• The values to be inserted could be taken
from the result of a query:

– Example:

INSERT INTO tablename (query)

INSERT INTO GivenCourses

(SELECT course, period + 2, teacher, NULL

FROM GivenCourses

WHERE period <= 2);

All courses that are given in periods one and two are also

scheduled to be given two periods later, with the same
teacher.

Explicit attribute lists

• Attribute order could be given explicit
when inserting.

– Example:

INSERT INTO

GivenCourses(course, period, teacher, nrStudents)

(SELECT course, period + 2, teacher, NULL

FROM GivenCourses

WHERE period <= 2);

Perhaps the teacher and nrStudents attributes were listed
in the other order in the definition of the table? Doesn’t

matter anymore since they are explicitly listed.

Quiz

What will the following insertion result in?

– Attribute lists can be partial. Any attributes not
mentioned will be given the value a default
value, which by default is NULL.

INSERT INTO

GivenCourses(course, period, teacher)

VALUES (’TDA357’, 3, ’Niklas Broberg’);

Default values

• Attributes can be given default values.

– Specified when a table is defined using the DEFAULT
keyword.

– Example:

– Default default value is NULL.

CREATE TABLE GivenCourses (

course CHAR(6),

period INT,

teacher VARCHAR(50),

nrStudents INT DEFAULT 0,

… constraints …

);

Insertion with default values

• Leaving out an attribute in an insertion with
explicitly named attributes gives that row the
default value for that attribute:

• When no attribute list is given, the same effect

can be achieved using the DEFAULT keyword:

INSERT INTO

GivenCourses(course, period, teacher)

VALUES (’TDA357’, 3, ’Niklas Broberg’);

INSERT INTO GivenCourses

VALUES (’TDA357’, 3, ’Niklas Broberg’, DEFAULT);

