
1

Database design III

Functional dependencies cont.

BCNF and 3NF

MVDs and 4NF

Quiz time!

What’s wrong with this schema?

Courses(code, period, name, teacher)

{(’TDA356’, 2, ’Databases’, ’Niklas Broberg’),

(’TDA356’, 4, ’Databases’, ’Rogardt Heldal’)}

Redundancy!

code→ name
code, period→ teacher

Using FDs to detect anomalies

• Whenever X → A holds for a relation R,
but X is not a key for R, then values of A

will be redundantly repeated!

Courses(code, period, name, teacher)

{(’TDA356’, 2, ’Databases’, ’Niklas Broberg’),

(’TDA356’, 4, ’Databases’, ’Rogardt Heldal’)}

code→ name
code, period→ teacher

Quiz: What kind of anomaly could this relational schema lead to?

Decomposition

• Fix the problem by decomposing Courses:

– Create one relation with the attributes from the offending FD, in
this case code and name.

– Keep the original relation, but remove all attributes from the RHS
of the FD. Insert a reference from the LHS in this relation, to the

key in the first.

Courses(code, name)

CoursePeriods(code, period, teacher)

code -> Courses.code

Courses(code, period, name, teacher)

code→ name

code, period→ teacher

What?

Boyce-Codd Normal Form

• A relation R is in Boyce-Codd Normal
Form (BCNF) if, whenever a nontrivial FD

X → A holds on R, X is a superkey of R.

– Remember: nontrivial means A is not part of X

– Remember: a superkey is any superset of a

key (including the keys themselves).

Courses(code, name)

CoursePeriods(code, period, teacher)

BCNF violations

• We say that an FD X → A violates BCNF with

respect to relation R if X → A holds on R, but X

is not a superkey of R.

Example:

code→ name violates BCNF

code, period → teacher does not.

Courses(code, period, name, teacher)

2

BCNF normalization

• Algorithm: Given a relation R and FDs F.
1. Identify new FDs using the transitive rule, and add

these to F.

2. Look among the FDs in F for a violation
X → A of BCNF w.r.t. R.

3. Decompose R into two relations
– One relation RX containing all the attributes in X+.

– The original relation R, except the values in X+ that are not
also in X (i.e. R – X+ + X), and with a reference from X to X
in RX.

4. Repeat from 2 for the two new relations until there
are no more violations.

Decompose Courses into BCNF.

Courses(code, period, name, teacher)

code→ name
code, period→ teacher

Courses(code, name)

CoursePeriods(course, period, teacher)

course -> Courses.code

{code}+ = {code, name}

No BCNF violations left, so we’re done!

Quiz!

Quiz again!

Why not use BCNF decomposition for designing

database schemas? Why go via E-R

diagrams?

– Decomposition doesn’t handle all situations
gracefully. E.g.

• Self-relationships

• Many-to-one vs. many-to-”exactly one”

• Subclasses

• Single-attribute entities

– E-R diagrams are graphical, hence easier to sell

than some mathematical formulae.

Recovery

• We must be able to recover the original data after
decomposition.

code per name teacher

TDA357 2 Databases Niklas Broberg

TDA357 4 Databases Rogardt Heldal

code name

TDA357 Databases

code per teacher

TDA357 2 Niklas Broberg

TDA357 4 Rogardt Heldal

code per name teacher

TDA357 2 Databases Niklas Broberg

TDA357 4 Databases Rogardt Heldal

+

”Lossy join”

Let’s try to split on non-existent code→ teacher

code per name teacher

TDA357 2 Databases Niklas Broberg

TDA357 4 Databases Rogardt Heldal

code teacher

TDA357 Niklas Broberg

TDA357 Rogardt Heldal

code per name

TDA357 2 Databases

TDA357 4 Databases

code per name teacher

TDA357 2 Databases Niklas Broberg

TDA357 4 Databases Niklas Broberg

TDA357 2 Databases Rogardt Heldal

TDA357 4 Databases Rogardt Heldal

+

What?

Lossless join

• Only if we decompose on proper
dependencies can we guarantee that no

facts are lost.

– Schemas from proper translation of E-R

diagrams get this ”for free”.

– The BCNF decomposition algorithm

guarantees lossless join.

• A decompositon that does not give

lossless join is bad.

3

Example of BCNF decomposition:

Decompose:

CoursePeriods(course, period, teacher)

course -> Courses.code

course, period→ teacher
teacher→ course

Violation!

Teaches(teacher, course)

course -> Courses.code

CoursePeriods(period, teacher)

teacher -> Teaches.teacher

Quiz: What just went wrong?

Two keys:
{course, period}

{teacher, period}

Teaches(teacher, course)

course -> Courses.code

CoursePeriods(period, teacher)

teacher -> Teaches.teacher

teacher course

Niklas Broberg TDA357

Rogardt Heldal TDA357

per teacher

2 Niklas Broberg

2 Rogardt Heldal

course per teacher

TDA357 2 Niklas Broberg

TDA357 2 Rogardt Heldal

course, period→ teacher ??

Problem with BCNF

• Some structures cause problems for

decomposition.

– AB → C, C → B

– Decomposing w.r.t. C → B gives two relations,

containing {C,B} and {A,C} respectively. This means
we can no longer enforce AB → C!

– Intuitively, the cause of the problem is that we must
split the LHS of AB → C over two different relations.

• Not quite the full truth, but good enough.

Third Normal Form (3NF)

• 3NF is a weakening of BCNF that handles
this situation.

– An attribute is prime in relation R if it is a

member of any key of R.

– Non-trivial X → A violates BCNF for R if X is

not a superkey of R.

– Non-trivial X → A violates 3NF for R if X is not

a superkey or R, and A is not prime in R.

Third Normal Form (3NF)

”A nonkey field must provide a fact about the
key, the whole key and nothing but the

key, so help me Codd”

Edgar F. (Ted) Codd was the inventor of the

relational data model.

Different algorithm for 3NF

• Given a relation R and a set of FDs F:

– Compute the minimal basis of F.

• Minimal basis means F, except remove A → C if
you have A → B and B → C.

– Group together FDs with the same LHS.

– For each group, create a relation with the LHS

as the key.

– If no relation contains a key of R, add one

relation containing only a key of R.

4

Example:

Decompose:

Courses(code, period, name, teacher)

code→ name
code, period→ teacher
teacher→ code

Two keys:
{code, period}

{teacher, period}

Courses(code, name)

CoursePeriods(course, period, teacher)

course -> Courses.code

teacher -> Teaches.name

Teaches(name, course)

course -> Courses.code

CoursePeriods contains a key for the original Courses
relation, so we have finished.

Earlier example revisited:

Since all attributes are members of some key, i.e.

all attributes are prime, there are no 3NF

violations. Hence CoursePeriods is in 3NF.

CoursePeriods(course, period, teacher)

course -> Courses.code

course, period→ teacher
teacher→ course

Two keys:
{course, period}

{teacher, period}

Quiz: What’s the problem now then?

3NF vs BCNF

• Three important properties of
decomposition:

1. Recovery (loss-less join)

2. No redundancy

3. Dependency preservation

• 3NF guarantees 1 and 3, but not 2.

• BCNF guarantees 1 and (almost) 2, but

not 3.

Almost?

Example:

Courses(code, name, room, teacher)

code→ name code room teacher

TDA357 VR Niklas Broberg

TDA357 VR Rogardt Heldal

TDA357 HC1 Niklas Broberg

TDA357 HC1 Rogardt Heldal

code name

TDA357 Databases

These two relations are in BCNF, but there’s lots of
redundancy!

Quiz: Why?

Let’s start from the bottom…

• No redundancy before join the two independent relations
• The two starting relations are what we really want to have

code room

TDA357 HC1

TDA357 VR

code teacher

TDA357 Niklas Broberg

TDA357 Rogardt Heldal

code room teacher

TDA357 VR Niklas Broberg

TDA357 VR Rogardt Heldal

TDA357 HC1 Niklas Broberg

TDA357 HC1 Rogardt Heldal

Compare with E/R

Course

code

Room

name

LecturesIn

Teacher

name

Course

code

Room

name

LecturesIn

Teacher

name

Gives

LecturesIn(code, teacher, room)

code -> Courses.code

room -> Rooms.name

teacher -> Teachers.name

LecturesIn(code, room)

code -> Courses.code

room -> Rooms.name

Gives(code, teacher)

code -> Courses.code

teacher -> Teachers.name

5

Independent sets of attributes

• Partition the sets of attributes in relation R into
three sets: X, Y and Z.

• If when we fix the values for one set of
attributes, X, the values of another set of
attributes Y are independent of the values of all
other attributes Z, then we can write:

X ↠ Y

and, by symmetry, X ↠ Z

• This kind of statement is a multivalued
dependency (abbreviated MVD).

An example

code ↠ room

code ↠ teacher

code room teacher

TDA357 VR Niklas Broberg

TDA357 VR Rogardt Heldal

TDA357 HC1 Niklas Broberg

TDA357 HC1 Rogardt Heldal

– room and teacher are independent
multivalued attributes.

– the rooms a course uses is independent of
the teachers on the course.

– X=code, Y=room, Z=teacher

Another example

• Sells(manufacturer,model,country)

manufacturer ↠ model

manufacturer ↠ country

• Each manufacturer sells all of its models in

each country where it sells cars!

• We really have two independent relations:

Sells(manufacturer,model)

Exports(manufacturer,country)

The name: multivalued dependency

• The concept that you’ve seen on the previous slides was
given the name multivalued dependency by Ronald

Fagin (IBM Research Laboratory) in 1977.

• The concept is about the independence of sets of

multivalued attributes.

• In the VT2009 version of this course, the teacher

decided to refer to this concept as “independency” (with
abbreviation “IND”) to emphasize this independence,

and used “X ↠ Y | Z” to show that concept relates three
sets of attributes.

• I think that was a good idea! I’m happy for you to use
either MVD or IND in this course.

Intuitive Definition of MVD

• An MVD X ↠Y is an assertion that if two
tuples of a relation agree on all the

attributes of X, then their components in

the set of attributes Y may be swapped,

and the result will be two tuples that are

also in the relation.

Picture of MVD X ↠Y (or IND X↠Y | Z)

X Y Z

equal

exchange

If two tuples have the same value for X, different
values for Y and different values for the Z attributes,

then there must also exist tuples where the values
of Y are exchanged, otherwise Y and Z are not

independent!

6

Implied tuples

If we have:

Courses(code, name, room, teacher)

code→ name

code name room teacher

TDA357 Databases VR Niklas Broberg

TDA357 Databases HC1 Rogardt Heldal

TDA357 Databases VR Rogardt Heldal

TDA357 Databases HC1 Niklas Broberg

we must also have:

otherwise room and teacher would not be independent!

code↠ room

code↠ teacher

FDs are MVDs

• Every FD is an MVD (but of course not the other

way around).

– If X ↠ Y holds for a relation, then all possible values

of Y for that X must be combined with all possible
combinations of values for ”all other attributes” for that

X.

– If X → A, there is only one possible value of A for that

X, and it will appear in all tuples with X. Thus it will be
combined with all combinations of values that exist for

that X for the rest of the attributes .

Example:

code name room teacher

TDA357 Databases VR Niklas Broberg

TDA357 Databases VR Rogardt Heldal

TDA357 Databases HC1 Niklas Broberg

TDA357 Databases HC1 Rogardt Heldal

There are four possible combinations of values for the attributes
room and teacher, and the only possible value for the name

attribute, ”Databases”, appears in combination with all of them.

There are two possible combinations of values for the attributes
name and room, and all possible values of the attribute
teacher appear with both of these combinations.

There are two possible combinations of values for the attributes
name and teacher, and all possible values of the attribute
room appear with both of these combinations.

code↠ room

code↠ teacher

code↠ name

MVD rules

• Complementation

– If X ↠ Y, and Z is all other attributes, then

X ↠ Z.

• Splitting doesn’t hold!

– code ↠ room, #seats

•code↠ room does not hold, since room and
#seats are not independent.

• None of the other rules for FDs hold either.

Example:

code name room #seats teacher

TDA357 Databases VR 216 Niklas Broberg

TDA357 Databases VR 216 Rogardt Heldal

TDA357 Databases HC1 126 Niklas Broberg

TDA357 Databases HC1 126 Rogardt Heldal

We cannot freely swap values in the #seats and room columns,

so neither

or

holds.

code↠ room, #seats

code↠ room

code↠ #seats

Fourth Normal Form

• The redundancy that comes from MVDs is
not removable by putting the database

schema in BCNF.

• There is a stronger normal form, called
4NF, that (intuitively) treats MVDs as FDs

when it comes to decomposition, but not

when determining keys of the relation.

7

Fourth Normal Form (4NF)

• 4NF is a strengthening of BCNF to handle

redundancy that comes from independence.

– An MVD X ↠ Y is trivial for R if

• Y is a subset of X

• X and Y together = R

– Non-trivial X → A violates BCNF for a relation R if X
is not a superkey.

– Non-trivial X ↠ Y violates 4NF for a relation R if X is
not a superkey.

• Note that what is (or is not) a superkey is still determined by

FDs only.

BCNF Versus 4NF

• Remember that every FD X ->Y is also
an MVD, X ↠Y.

• Thus, if R is in 4NF, it is certainly in

BCNF.

– This is because any BCNF violation is a

4NF violation.

• But R could be in BCNF and not 4NF,

because MVDs are “invisible” to BCNF.

Normal forms
1 NF – Only simple values allowed (definition).

Problems with nonkey attributes:

2NF – (A step towards 3NF)

3NF – All nonkey attributes only depends on the whole key.

Problems within key attributes (key > 2):

4NF – Multivalued dependencies eliminated.

5NF – Other possible dependencies elimated.

Problems from nonkey attribute to key.

BCNF – Dependency from nonkey attribute to key eliminated

Constraints

• We have different kinds of constraints:

– Dependency constraints (X → A)

• Table structure, keys, uniqueness

– Referential constraints

• References (a.k.a. foreign keys)

– Value constraints

• E.g. a room must have a positive number of seats

– Cardinality constraints

• E.g. no teacher may hold more than 2 courses at the same

time.

Extra constraints in E-R

code

name Given GivenCourse teacher

period #students

Course

Period is a

number 1-4

The point is that the diagram should be easy

to understand, and easy to implement!

Extra constraints in schemas

• No formal syntax exists. Don’t let that stop
you!

GivenCourses(course, period, teacher)

1 ≤≤≤≤ period ≤≤≤≤ 4

8

Goals of database design

• ”Map” the domain, find out what the
database is intended to model.

– The database should accept all data that is

possible in reality.

– The database should agree with reality and

not accept impossible or unwanted data.

• We accomplish this by making sure that

our database captures all the constraints

of the domain.

The whole point of design

• The result of design should be a database
schema that:

– correctly models the domain and its

constraints.

– is easy to understand.

– can be implemented directly in a DBMS!

…even by someone else than the designer

Course Objectives – Design

When the course is through, you should

– Given a domain, know how to design a
database that correctly models the domain
and its constraints.

”We want a database that we can use for
scheduling courses and lectures. This is
how it’s supposed to work: …”

Exam – FDs and NFs

”A car rental company has the following, not very
successful, database. They want your help to improve

it. …”

• Identify all functional dependencies you expect to hold
in the domain.

• Indicate which of those dependencies violate BCNF

with respect to the relations in the database.

• Do a complete decomposition of the database so that

the resulting relations are in BCNF.

Quiz!

Decompose Schedules into BCNF.
Schedules(code, name, period, numStudents, teacher,

room, numSeats, weekday, hour)

code → name

code, period → #students

code, period → teacher

room → #seats

code, period, weekday → hour

code, period, weekday → room

room, period, weekday, hour → code

Next Lecture

Database Construction –

SQL Data Definition Language

