
1

Generalisation/Specialisation

• Subclass = sub-entity = special case.

• More attributes and/or relationships.

• A subclass shares the key of its parent.

• Drawn as an entity connected to the
superclass by a special triangular
relationship called ISA.
Triangle points to superclass.
– ISA = ”is a”

Example:

– A computer room is a room.

– Not all rooms are computer rooms.

– Computer rooms share the extra property that
they have a number of computers.

Coursename

code

teacher

Room

name

#seatsClassesIn

ComputerRoom #computers

ISA

Subclass/Superclass Hierarchy

• We assume that subclasses form a tree
hierarchy.

– A subclass has only one superclass.

– Several subclasses can share the same

superclass.

• E.g. Computer rooms, lecture halls, chemistry labs
etc. could all be subclasses of Room.

– One class can have several (orthogonal)

subclass hierarchies.

Translating ISA to relations

• Three different approaches

– E-R: An ISA relationship is a standard one-to-”exactly

one” relationship. Each subclass becomes a relation
with the key attributes of the superclass included.

– NULLs: Join the subclass(es) with the superclass.
Entities that are not part of the subclass use NULL for

the attributes that come from the subclass.

– Object-oriented: Each subclass becomes a relation

with all the attributes of the superclass included. An
entity belongs to either of the two, but not both.

The E-R approach:

Room

name

#seats

ComputerRoom

#computers

ISA

Rooms(name, #seats)

ComputerRooms(name, #computers)

name -> Rooms.name

name #seats

VR 216

ED6225 52

name #computers

ED6225 26

What?

The NULLs approach:

Room

name

#seats

ComputerRoom

#computers

ISA

Rooms(name, #seats, #computers)

name #seats #computers

VR 216 NULL

ED6225 52 26

What?

2

The object-oriented approach:

Room

name

#seats

ComputerRoom

#computers

ISA

Rooms(name, #seats)

ComputerRooms(name, #seats,

#computers)

name #seats

VR 216

name #seats #computers

ED6225 52 26

What?

Comparison

• E-R approach
– Good when searching for general information about

all entities in the class hierarchy.
• ”List the number of seats in all rooms”

• OO approach
– Good when searching for information about entities in

a subclass only.
• ”List the number of seats in all computer rooms”

• NULLs approach
– Could save space in situations where most entities in

the hierarchy are part of the subclass (e.g. most
rooms have computers in them).

– Reduces the need for joins (see later).

E-R summary

• Entities

• Attributes

• Relationships

– Multiplicity

• Weak entities

• Generalisation/specialisation

• Translation to relations

Scheduler database revisited

”We want a database for an application that
we will use to schedule courses. …”

– Course codes and names, and the period the courses are given

– The number of students taking a course

– The name of the course responsible

– The names of all lecture rooms, and the number of seats in them

– Weekdays and hours of lectures

E-R diagram for Scheduler

In

code

name

Lecture

Of

weekday

hour

Given GivenCourse teacher

period #students

Course

Roomname

#seats

Translate to relations

Courses(code, name)

GivenCourses(course, period, #students, teacher)

course -> Courses.code

Lectures(course, period, room, weekday, hour)

(course, period) -> GivenCourses.(course, period)

room -> Rooms.name

Rooms(name, #seats)

Compare with the ”good” one from the
previous lecture – we’ve reached the

same conclusion using the structured

and well-defined method.

3

Exam – E-R diagrams

”A small train company wants to design a booking system
for their customers. …”

• Given the problem description above, construct an E-R
diagram.

• Translate the E-R diagram into a database schema.

Programming Assignment

• Write a ”student portal” application in Java
– Part I: Design

• Given a domain description, design a database schema

using an E-R diagram and functional dependencies.

– Part II: Construction and Usage

• Implement the schema from Part I in Oracle.

• Insert relevant data.

• Create views.

– Part III: Construction

• Create triggers.

– Part IV: Interfacing from external Application

• Write a Java application that uses the database from Part III.

Programming Assignment

• Each task must be completed and
approved before the next can be started.

– Submit in good time!

• Preferrably, work in pairs.

System Specification

• Your final application should have the following

functionality:

– Info: A student should be able to ask the system for

info about herself, including what courses she has
read or is registered to.

– Register: A student should be able to register for a
course. If there is no room on the course, she should

be put in a waiting list.

– Unregister: A student should be able to withdraw a

registration. If some other student is on the waiting
list, that student should be registered instead.

Part I - Design

• Design the database schema by drawing
an E-R diagram of the domain, and then

translating your diagram to relations.

• Verify your schema by identifying all
functional dependencies that you expect to

hold on the domain, and check them

against the schema.

Part I - Design

• Hand in:

– a diagram

– a database schema

– the FDs of the domain

– a text report where you argue the correctness

of your solution.

• Submission deadline: 18 November 2014

4

Database design II

Functional Dependencies

BCNF

Design theory for relational

databases
• Offers ways to “improve” a relational

design

• (“improve” usually means reducing the

amount of redundancy)

• Chapter 3 of the textbook introduces the

concepts:

– functional dependencies

– normalization

Functional dependencies (FDs)

• X → A

– ”X determines A”, ”X gives A”

– ”A depends on X”

• X is a set of attributes, A is a single

attribute

• Examples:

– code→ name

– code, period → teacher

Why ”functionally” dependent?

• X → A is a (deterministic) function from X
to A. Given values for the attributes in the

set X, we get the value of A.

• Example:

– code→ name

– imagine a function f(code) which returns the

name associated with a given code.

A note on syntax

• A functional dependency exists between

attributes in the same relation

e.g. in relation Courses we have FD:

code → name

• A reference exists between attributes in two

different relations, e.g. for relation GivenCourses

we have reference:

course -> Courses.code

• Two completely different things, but with similar

syntax. Clear from the context which is intended.

Assertions on a schema

• X → A is an assertion about a schema R

– If two tuples in R agree on the values of the

attributes in X, then they must also agree on

the value of A.

• Example: code, period→ teacher

– If two tuples in the GivenCourses relation

have the same course code and period, then

they must also have the same teacher.

5

Quiz!

What are reasonable FDs for the scheduler domain?

Schedules(code, name, period, #students,

teacher, room, #seats, weekday, hour)

code name per. #st teacher room #seats day hour

TDA357 Databases 2 87 Niklas Broberg VR 216 Monday 13:15

TDA357 Databases 2 87 Niklas Broberg HB1 184 Thursday 10:00

TDA357 Databases 4 93 Rogardt Heldal HB1 184 Tuesday 08:00

TDA357 Databases 4 93 Rogardt Heldal HB1 184 Friday 08:00

TIN090 Algorithms 1 64 Devdatt Dubhashi HC1 126 Wednesday 08:00

TIN090 Algorithms 1 64 Devdatt Dubhashi HA3 94 Thursday 13:15

Quiz: (an) answer

What are reasonable FDs for the

scheduler domain?

code → name

code, period → #students

code, period → teacher

room → #seats

code, period, weekday → hour

code, period, weekday → room

room, period, weekday, hour → code

Where do FDs come from?

• ”Keys” of entities
– If code is the key for the entity Course, then all other

attributes of Course are functionally determined by
code, e.g. code → name

• Relationships
– If all courses hold lectures in just one room, then the

key for the Course entity also determines all attributes
of the Room entity, e.g.
code→ room

• Physical reality
– No two courses can have lectures in the same room

at the same time, e.g.
room, period, weekday, hour→ code

Multiple attributes on RHS

• X → A,B

– Short for X → A and X → B

– If we have both X → A and X → B, we can

combine them to X → A,B.

– course, period → teacher, #students

• Multiple attributes on LHS can be crucial!

– course, period → teacher

•course → teacher

•period → teacher

Quiz!

• What’s the difference between the LHS of
a FD, and a key?

– both uniqely determine the values of other

attributes.

– …but a key must determine all other attributes

in a relation!

– We use FDs when determining keys of

relations (will see how shortly).

Trivial FDs

• A FD is trivial if the attribute on the RHS is
also on the LHS.

– Example: course, period → course

Quiz: Is this a trivial FD?

course, period→ course, name

Shorthand for

course, period→ course (trivial)

course, period→ name (not trivial)

6

Armstrong’s axioms

Suppose X, Y and Z are sets of attributes in

relation R.

1. Reflexivity.

If Y is a subset of X, then X → Y is a trivial FD.

2. Augmentation.

If X → Y holds, then XZ → YZ holds.

3. Transitivity.

If X → Y and Y → Z hold, then X → Z holds.

Basis

Suppose S is a set of FDs that hold for a
given relation.

• A basis for S is any set of FDs that is

equivalent to S.

• S and B are equivalent if and only if

S follows from B and B follows from S.

Minimal basis

B is a minimal basis if:

1.All FDs in B have a single attribute on the right

side.

2.The result of removing any FD from B is not a

basis.

3.The result of removing any attribute from the

left side of any FD in B is not a basis.

Closure of a set of attributes

• Computing the closure of X means finding
all FDs that have X as the LHS.

• If A is in the closure of X, then X → A.

• The closure of X is written X+.

Computing the closure

• Given a set of FDs, F, and a set of
attributes, X:

1. Start with X+ = X.

2. For all FDs Y → B in F where Y is a subset of X+,
add B to X+.

3. Repeat step 2 until there are no more FDs that
apply.

Quiz!

What is the closure of
{code, period, weekday}?

code → name

code, period → #students

code, period → teacher

room → #seats

code, period, weekday → hour

code, period, weekday → room

room, period, weekday, hour → code

{code, period, weekday}+ =

{code, period, weekday, name, #students,

teacher, hour, room, #seats}

7

What are FDs really?

• Functional dependencies represent a
special kind of constraints of a domain –

dependency constraints.

• We can use FDs to verify that our design

indeed captures the constraints we expect.

Finding keys

• For a relation R, any subset X of attributes of R
such that X+ contains all the attributes of R is a
superkey of R.
– Intuitively, a superkey is any set of attributes that

determine all other attributes.

– The set of all attributes is a superkey.

• A key for R is a minimal superkey.
– A superkey X is minimal if no proper subset of X is

also a superkey.
• Minimal – no subset is a key

• Minimum – the smallest, i.e. the one with the fewest number
of attributes

Using attribute closures to find all

FDs, superkeys and keys (1)
Suppose we have relation R(A,B,C) and FDs

AB → C and C → A.

A systematic way to find all other FDs is to
consider the closures of all sets of attributes:

{A}+ = {A} {A,B}+ = {A,B,C} {A,B,C}+ = {A,B,C}

{B}+ = {B} {A,C}+ = {A,C}

{C}+ = {A,C} {B,C}+ = {A,B,C}

One extra (non-trivial) FD: BC → A

Using attribute closures to find all

FDs, superkeys and keys (2)
{A}+ = {A} {A,B}+ = {A,B,C} {A,B,C}+ = {A,B,C}

{B}+ = {B} {A,C}+ = {A,C}

{C}+ = {A,C} {B,C}+ = {A,B,C}

• Superkeys: {A,B}, {B,C}, {A,B,C}

• Keys: {A,B}, {B,C}

• {A,B,C} is not a key, since subset(s) of it’s
attributes are (super)keys.

Primary keys

• There can be more than one key for the
same relation.

• We choose one of them to be the primary

key, which is the key that we actually use
for the relation.

• Other keys could be asserted through
uniqueness constraints.

– E.g. for the self-referencing relation

Example:

Rooms(name, #seats)

NextTo(right, left)

right -> Rooms.name

left -> Rooms.name

left unique

For NextTo we have both

• left → right

• right → left

Both left and right are keys, but we have chosen

right to be the primary key for NextTo. We can add a
constraint stating that left should be unique.

Note: The syntax for constraints is not well specified. Both
the reference syntax, as well as the uniqueness assertion,

are my suggestions only (but they’re rather good).

8

Quiz!

What is the key of Schedules?

code → name

code, period → #students

code, period → teacher

room → #seats

code, period, weekday → hour

code, period, weekday → room

room, period, weekday, hour → code

Schedules(code, name, period, #students,

teacher, room, #seats, weekday, hour)

Example:

• X = {code, period, weekday, hour}

is a superkey of the relation Schedules since X+ is

the set of all attributes of Schedules.
• However, Y = {code, period, weekday}

is also a superkey, and is a subset of X, so X is

not a key of Schedules.

• No subset of Y is a superkey, so Y is also a key.

Two keys exist:

{code, period, weekday}

{room, period, weekday, hour}

Make reality match theory

• In some cases reality is not suitably
deterministic. We may need to invent key

attributes in order to have a key at all.

Quiz: Give examples of this phenomenon from reality!

Social security numbers, course codes, product numbers,

user names etc.

Quiz time!

What’s wrong with this schema?

Courses(code, period, name, teacher)

{(’TDA356’, 2, ’Databases’, ’Niklas Broberg’),

(’TDA356’, 4, ’Databases’, ’Rogardt Heldal’)}

Redundancy!

code→ name
code, period→ teacher

Using FDs to detect anomalies

• Whenever X → A holds for a relation R,
but X is not a key for R, then values of A

will be redundantly repeated!

Courses(code, period, name, teacher)

{(’TDA356’, 2, ’Databases’, ’Niklas Broberg’),

(’TDA356’, 4, ’Databases’, ’Rogardt Heldal’)}

code→ name
code, period→ teacher

Quiz: What kind of anomaly could this relational schema lead to?

Next Lecture

BCNF decomposition

3NF, 4NF

