
1

XML query languages

XPath
XQuery

XPath

• XPath is a language for describing paths
in XML documents.
– Think of an SSD graph and its paths.

• Path descriptors are similar to path
descriptors in a (UNIX) file system.
– A simple path descriptor is a sequence of

element names separated by slashes (/).

– / denotes the root of a document.

– // means the path can start anywhere in the
tree from the current node.

Examples:

<Courses>

<Course name=”Databases” code=”TDA357”>

<GivenIn period=”2” teacher=”Niklas Broberg” />

<GivenIn period=”4” teacher=”Rogardt Heldal” />

</Course>

<Course name=”Algorithms” code=”TIN090”>

<GivenIn period=”1” teacher=”Devdatt Dubhashi” />

</Course>

</Courses>

/Courses/Course/GivenIn will return the set of all
GivenIn elements in the document.

//GivenIn will return the same set, but only since we know by
our schema that GivenIn elements can only appear in that

position.

/Courses will return the document as it is.

More path descriptors

• There are other path descriptors than / and //:
– * denotes any one element:

• /Courses/*/* will give all children of all children of a
Courses element, i.e. all GivenIn elements.

• //* will give all elements anywhere.

– . denotes the current element:
• /Courses/Course/. will return the same elements as
/Courses/Course

– .. denotes the parent element:
• //GivenIn/.. will return all elements that have a
GivenIn element as a child.

• Think about how we can traverse the graph –
upwards, downwards, along labelled edges etc.

Attributes

• Attributes are denoted in XPath with a @

symbol:

– /Courses/Course/@name will give the

names of all courses.

Quiz: For the Scheduler example, what will
the path expression //@name result in?

The names of all courses, and the names of all rooms.

Axes

• The various directions we can follow in a
graph are called axes (sing. axis).

• General syntax for following an axis is

– Example: /Courses/child::Course

• Only giving a label is shorthand for
child::label, while @ is short for
attribute::

axis::

2

More axes

• Some other useful axes are:

– parent:: = parent of the current node.
• Shorthand is ..

– descendant-or-self:: = the current node(s) and all
descendants (i.e. children, their children, …) down
through the tree.

• Shorthand is //

– ancestor::, ancestor-or-self = up through the tree

– following-sibling:: = any elements on the same level
that come after this one.

– …

Selection

• We can perform tests in XPath
expressions by placing them in square
brackets:
– /Courses/Course/GivenIn[@period = 2] will

give all GivenIn elements that regard the second

period.

Quiz: What will the path expression
/Courses/Course[GivenIn/@period = 2]

result in?

All Course elements that are given in the second period (but for each
of those, all the GivenIn elements for that course).

Quiz!

Write an XPath expression that gives the
courses that are given in period 2, but with
only the GivenIn element for period 2 as a
child!

It can’t be done!
XPath is not a full query language, it only allows us
to specify paths to elements or groups of elements.
We can restrict in the path using [] notation, but we
cannot restrict further down in the tree than what
the path points to.

Example: /Courses/Course[GivenIn/@period = 2]

Courses

db
alg

p2
p4

p1
138

Niklas Broberg

120

Rogardt Heldal

68

Devdatt Dubhashi

Algorithms

Databases

TDA357 TIN090

2

4

1

course course
code

name

givenIn

period

teacher

nrStudents

code

name

givenIn

period

teacher

nrStudentsnrStudents

period

teacher

givenIn

XQuery

• XQuery is a full-fledged querying language
for XML documents.

– Cf. SQL queries for relational data.

• XQuery is built on top of XPath, and uses
XPath to point out element sets.

• XQuery is a W3 recommendation.

If our XQuery file contains:

or:

then the XQuery processor will produce the
following XML document:

XQuery “Hello World”

<Greeting>Hello World</Greeting>

let $s := "Hello World"

return <Greeting>{$s}</Greeting>

<?xml version="1.0" encoding="UTF-8"?>

<Greeting>Hello World</Greeting>

3

Function doc("file.xml")

bash$ cat example.xq

doc("courses.xml")

bash$ xquery example.xq

<?xml version="1.0" encoding="UTF-8"?>

<Courses>

<Course name="Databases" code="TDA357">

<GivenIn period="2" teacher="Niklas Broberg"/>

<GivenIn period="4" teacher="Rogardt Heldal"/>

</Course>

<Course name="Algorithms" code="TIN090">

<GivenIn period="1" teacher="Devdatt Dubhashi"/>

</Course>

</Courses>

Quiz!

Write an XQuery expression that puts extra
<Result></Result> tags around the result, e.g.

<Result>

<Courses>

<Course name="Databases" code="TDA357">

<GivenIn period="2" teacher="Niklas Broberg"/>

<GivenIn period="4" teacher="Rogardt Heldal"/>

</Course>

<Course name="Algorithms" code="TIN090">

<GivenIn period="1" teacher="Devdatt Dubhashi"/>

</Course>

</Courses>

</Result>

Putting tags around the result

<Result>{doc("courses.xml")}</Result>

let $d := doc("courses.xml")

return <Result>{$d}</Result>

Curly braces are necessary to evaluate the
expression between the tags.

Alternatively, we can use a let clause to assign a
value to a variable. Again, curly braces are
needed to get the value of variable $d.

FLWOR

• Basic structure of an XQuery expression is:

– FOR-LET-WHERE-ORDER BY-RETURN.

– Called FLWOR expressions (pronounce as flower).

• A FLWOR expression can have any number of
FOR (iterate) and LET (assign) clauses, possibly
mixed, followed by possibly a WHERE clause
and possibly an ORDER BY clause.

• Only required part is RETURN.

Quiz!

What does the following XQuery expression
compute?

let $courses := doc("courses.xml")

for $gc in $courses//GivenIn

where $gc/@period = 2

return <Result>{$gc}</Result>

<?xml version="1.0" encoding="UTF-8"?>

<Result>

<GivenIn period="2" teacher="Niklas Broberg"/>

</Result>

Quiz!

What does the following XQuery expression
compute?

let $courses := doc("courses.xml")

let $gc := $courses//GivenIn[@period = 2]

return <Result>{$gc}</Result>

<?xml version="1.0" encoding="UTF-8"?>

<Result>

<GivenIn period="2" teacher="Niklas Broberg"/>

</Result>

4

Quiz!

What does the following XQuery expression
compute?

let $courses := doc("courses.xml")

for $c in $courses/Courses/Course

let $code := $c/@code

let $given := $c/GivenIn

where $c/GivenIn/@period = 2

return <Result code="{$code}">{$given}</Result>

<? xml version="1.0" encoding="UTF-8"?>

<Result code="TDA357">

<GivenIn period="2" teacher="Niklas Broberg"/>

<GivenIn period="4" teacher="Rogardt Heldal"/>

</Result>

Quiz!

Write an XQuery expression that gives the
courses that are given in period 2, but with
only the GivenIn element for period 2 as

a child!

let $courses := doc("courses.xml")

for $c in $courses/Courses/Course

let $code := $c/@code, $name := $c/@name

let $gc := $c/GivenIn[@period = 2]

where not(empty($gc))

return <Course code="{$code}"

name="{$name}">{$gc}</Course>

A sequence of elements

let $courses := doc("courses.xml")

for $gc in $courses/Courses/Course/GivenIn

return $gc

<GivenIn period="2" teacher="Niklas Broberg"/>

<GivenIn period="4" teacher="Rogardt Heldal"/>

<GivenIn period="1" teacher="Devdatt Dubhashi"/>

The previous examples have all returned a single
element. But an XQuery expression can also
evaluate to a sequence of elements, e.g.

Putting tags around a sequence
let $courses := doc("courses.xml")

let $seq := (

for $gc in $courses/Courses/Course/GivenIn

return $gc)

return <Result>{$seq}</Result>

<?xml version="1.0" encoding="UTF-8"?>

<Result>

<GivenIn period="2" teacher="Niklas Broberg"/>

<GivenIn period="4" teacher="Rogardt Heldal"/>

<GivenIn period="1" teacher="Devdatt Dubhashi"/>

</Result>

<Result>

{

let $courses := doc("courses.xml")

for $gc in $courses/Courses/Course/GivenIn

return $gc

}

</Result>

Cartesian product

let $courses := doc("courses.xml")

for $c in $courses/Courses/Course

for $gc in $courses/Courses/Course/GivenIn

return <Info name="{$c/@name}" teacher="{$gc/@teacher}" />

<Info name="Databases" teacher="Niklas Broberg"/>

<Info name="Databases" teacher="Rogardt Heldal"/>

<Info name="Databases" teacher="Devdatt Dubhashi"/>

<Info name="Algorithms" teacher="Niklas Broberg"/>

<Info name="Algorithms" teacher="Rogardt Heldal"/>

<Info name="Algorithms" teacher="Devdatt Dubhashi"/>

Two for clauses will iterate over all combinations
of values for the loop variables, e.g.

Aggregations

<Result>

{

count(doc("scheduler.xml")//Room)

}

</Result>

<Result>

{

sum(doc("scheduler.xml")//Room/@nrSeats)

}

</Result>

XQuery provides the usual aggregation functions,
count, sum, avg, min, max.

5

Joins in XQuery

We can join two or more documents in XQuery by
calling the function doc() two or more times.

let $a = doc("a.xml")

let $b = doc("b.xml")

...

(... compare values in $a with values in $b ...)

<Result>

{

for $d in (doc("scheduler.xml"), doc("courses.xml"))

return $d

}

</Result>

Quiz: what does this XQuery expression compute?

Sorting in XQuery

<Result>

{

let $courses := doc("courses.xml")

for $gc in $courses/Courses/Course/GivenIn

order by $gc/@period

return $gc

}

</Result>

<?xml version="1.0" encoding="UTF-8"?>

<Result>

<GivenIn period="1" teacher="Devdatt Dubhashi"/>

<GivenIn period="2" teacher="Niklas Broberg"/>

<GivenIn period="4" teacher="Rogardt Heldal"/>

</Result>

Eliminating duplicates
<Scheduler>

<Courses>

<Course code="TDA357" name="Databases">

<GivenIn period="2" teacher="Graham Kemp">

<Lecture weekday="Tuesday" hour="10:00" room="HB2" />

<Lecture weekday="Friday" hour="10:00" room="HB2" />

</GivenIn>

<GivenIn period="3" teacher="Niklas Broberg">

<Lecture weekday="Monday" hour="15:15" room="VR" />

<Lecture weekday="Thursday" hour="10:00" room="HB1" />

</GivenIn>

</Course>

</Courses>

</Scheduler>

Find rooms where lectures have been scheduled
(sorted by room name, and without duplicates).

Eliminating duplicates

<Result>

{

let $s := doc(“scheduler.xml")

for $r in distinct-values($s//Lecture/@room)

order by $r

return <Room name="{$r}" />

}

</Result>

<Result>

<Room name="HB1"/>

<Room name="HB2"/>

<Room name="VR"/>

</Result>

if-then-else expression

<Result>

{

for $r in doc("scheduler.xml")//Room

return

if ($r/@nrSeats > 200)

then <BigRoom name="{$r/@name}" />

else <SmallRoom name="{$r/@name}" />

}

</Result>

<Result>

<BigRoom name="VR"/>

<SmallRoom name="HB1"/>

</Result>

Quantification in XQuery

every variable in expression satisfies condition

some variable in expression satisfies condition

An XQuery expression might evaluate to a single
item or a sequence of items.

Most tests in XQuery, such as the "=" comparison
operator, are existentially quantified anyway, so
"some" is rarely needed.

6

Comparing items in XQuery

• The comparison operators eq, ne, lt, gt, le and
ge can be used to compare single items.

• If either operand is a sequence of items, the
comparison will fail.

Updating XML

• We have corresponding languages for
XML and relational databases:

– SQL DDL � DTDs or XML Schema.

– SQL queries � XQuery

– SQL modifications � ??

• XQuery Update Facility 1.0 is a W3C
recommendation (March 2011)

– insert, delete, replace, rename, transform
expressions

Warning …

• “Many companies report a strong interest
in XML. XML however, is so flexible that
this is similar to expressing a strong
interest in ASCII characters.”
http://xml.coverpages.org/BiztalkFrameworkOverviewFinal.html

Looking to the future

– RDF, RDF Schema, OWL, …

Summary XML

• XML is used to describe data organized as documents.
– Semi-structured data model.

– Elements, tags, attributes, children.

– Namespaces.

• XML can be valid with respect to a schema.
– DTD: ELEMENT, ATTLIST, CDATA, ID, IDREF

– XML Schema: Use XML for the schema domain to describe your
schema.

• XML can be queried for information:
– XPath: Paths, axes, selection

– XQuery: FLWOR.

Exam –XML

”A medical research facility wants a database that uses a
semi-structured model to represent different degrees
of knowledge regarding the outbreak of epidemic
diseases. …”

• Suggest how to model this domain as a DTD (or XML
Schema).

• Discuss the benefits of the semi-structured data model
for this particular domain.

• Given this DTD, what does this XPath/XQuery
expression compute?

• Write an XQuery expression that computes…

