
1

Database Usage

(and Construction)

Transactions

Authorization

Setting

• DBMS must allow concurrent access to
databases.

– Imagine a bank where account information is

stored in a database not allowing concurrent

access. Then only one person could do a

withdrawal in an ATM machine at the time –

anywhere!

• Uncontrolled concurrent access may lead

to problems.

Example:

Imagine a program that does the following:

1. Get a day, a time and a
course from the user in

order to schedule a
lecture. (get)

2. List all available rooms at
that time, with number of

seats, and let the user
choose one. (list)

3. Book the chosen room for
the given course at the
given time. (book)

SELECT *

FROM ROOMS

WHERE name NOT IN

(SELECT room

FROM Lectures

WHERE weekday = theDay

AND hour = theTime);

INSERT INTO Lectures VALUES

(theCourse, thePeriod,

theDay, theTime,

chosenRoom);

What could go wrong?

Running in parallel

• Assume two people, A and B, both try to book a

room for the same time, at the same time.

• Both programs perform the sequence
(get)(list)(book), in that order.

• But we can interleave the blocks of the two

sequences in any way we like!

– Here’s one possible interleaving:

A: (get) (list) (book)

B: (get) (list) (book)

Interleaving

A: (get) (list) (book)

B: (get) (list) (book)

time →

A lists all available

rooms at time T,
which includes VR.

B lists all available

rooms at time T,
which includes VR.

A decides to book

VR for her lecture.

B decides to book

VR for his lecture.
But now VR is no

longer free!

DBMS vs OS

• An operating system supports concurrent
access, and interaction.

– E.g. two users modify the same file. If both

save their changes, then the changes of one

get lost.

• A DBMS must support concurrent access,

but must keep processes from interacting!

2

Quiz!

Look again at the interleaving:

What can we do to fix it?

A: (get) (list) (book)

B: (get) (list) (book)

time →

The only way that we get the desired behavior is if both A
and B may perform the operations (list)(book) without
the other doing a (book) in the middle!

Serializability

• Two programs are run in serial if one finishes

before the other starts.

• The running of two programs is serializable if the

effects are the same as if they had been run in

serial.

A: (get) (list) (book)

B: (get) (list) (book)

A: (get) (list)(book)

B: (get) (list)(book)

Not serializable
Serializable

Example:

Assume we perform the following operations to

transfer 100 SEK from account X to account Y.

1. Check account
balance in account X.

2. Subtract 100 from
account X.

3. Add 100 to account Y.

SELECT balance

FROM Accounts

WHERE accountID = X;

UPDATE Accounts

SET balance = balance - 100

WHERE accountID = X;

UPDATE Accounts

SET balance = balance + 100

WHERE accountID = Y;

Two things can go wrong: We can have strange interleavings like

before. But also, assume the program crashes after executing 1 and 2
– we’ll have lost 100 SEK!

Quiz!
Assume we run the following two programs in parallel, and

assume the databases contains only the Databases lecture

in room VR on Mondays (and all lectures are 2h long):

1. Insert a lecture for the
Databases course in room

VR at 10 on Mondays.
(ins)

2. Delete the lecture in the

Databases course in room
VR at 13 on Mondays.
(del)

1. Find the first lecture of the
day in room VR on Mondays.
(min)

2. Find the last lecture of the

day in room VR on Mondays.
(max)

3. Return the total time that

room VR is occupied,
((max+2)-min). (ret)

P1: P2:

P1 (ins)(del)

P2 (min)(max)(ret)

• Need to consider possible schedules of the actions that
access or update the database: (ins)(del)(min)(max)

(ins)(del)(min)(max) P2 returns 2

(ins)(min)(del)(max) P2 returns 2

(ins)(min)(max)(del) P2 returns 5

(min)(ins)(del)(max) P2 returns -1

(min)(ins)(max)(del) P2 returns 2

(min)(max)(ins)(del) P2 returns 2

…Quiz continued!

What could
P2 return?

ACID Transactions

• A DBMS is expected to support ”ACID
transactions”, which are

– Atomic: Either the whole transaction is run, or

nothing.

– Consistent: Database constraints are

preserved.

– Isolated: Different transactions may not

interact with each other.

– Durable: Effects of a transaction are not lost

in case of a system crash.

3

Atomicity

• For many programs, we require that ”all or
nothing” is executed.

– We say a sequence of actions is executed

atomically if it is executed either in entirety, or

not at all.

• The state in the middle is never visible from

outside the sequence.

• cf. Greek atom = indivisible.

• In case of a crash in the middle, any changes that
were made up until that point must be undone.

Transactions in SQL

• SQL supports transactions, often behind the

scenes.

– An SQL statement is a transaction.

• E.g. an update of a table can’t be interrupted after half the

rows.

• Any triggers, procedures, functions etc. that are started by

the statement is part of the same transaction.

– In PSM or Embedded SQL, a transaction begins at

the first SQL operation and ends when the program
does, or it is explicitly ended by the programmer.

Controlling transactions

• We can explicitly start transactions using the
START TRANSACTION statement, and end them

using COMMIT or ROLLBACK:

– COMMIT causes an SQL transaction to complete

successfully.

• Any modifications done by the transaction are now permanent in
the database.

– ROLLBACK causes an SQL transaction to end by

aborting it.

• Any modifications to the database must be undone.

• Rollbacks could be caused implicitly by errors e.g. division by 0.

Read-only vs. Read-write

• A transaction that does not modify the database

is called read-only.

– A read-only transaction can never interfere with

another transaction (but not the other way around!).

– Any number of read-only transactions can be run
concurrently.

• A transaction that both reads and modifies the

database is called read-write.

– No other transaction may write between the read and
write.

SET TRANSACTION

• We can hint the DBMS that a transaction
only does reading, by issuing the

statement:

– Possibly the DBMS can make use of the

information and optimize scheduling.

SET TRANSACTION READ ONLY;

Drawbacks

• Serializability and atomicity are necessary,
but come at a cost.

– We must retain old data until the transaction

commits.

– Other transactions might have to wait for one

to complete.

• In some cases some interference may be

acceptable, and could speed up the

system greatly.

4

Example:

Recall the first example of booking rooms:

It could take time for the user to decide which

room to choose after getting the list. If we make

this a serializable transaction, all other users

would have to wait as well.

The worst thing that could happen is that B is told

to choose another room when he tries to book

the room that A just booked.

A: (get) (list) (book)

B: (get) (list) (book)

time →

Isolation levels

• ANSI SQL standard defines four isolation

levels, which are choices about what kinds

of interference are allowed between

transactions.

• Each transaction chooses its own isolation

level, deciding how other transactions may

interfere with it.

• Isolation level is defined in terms of three

phenomena that can occur.

Kinds of interference

The ANSI SQL standard describes:

• Dirty read

• Non-repeatable read

• Phantom

(These, and other kinds of interference, are discussed in:
Berenson, H., Bernstein, P., Gray, J., Melton, J., O'Neil, E.,

& O'Neil, P. (1995). A critique of ANSI SQL isolation levels.
ACM SIGMOD Record, 24(2), 1-10.)

Dirty read

• Transaction T1 modifies a data item.

• Another transaction T2 then reads that

data item before T1 performs a COMMIT

or ROLLBACK.

• If T1 then performs a ROLLBACK, T2 has

read a data item that was never committed
and so never really existed.

Non-repeatable read

• Transaction T1 reads a data item.

• Another transaction T2 then modifies or

deletes that data item and commits.

• If T 1 then attempts to re-read the data

item, it receives a modified value or

discovers that the data item has been
deleted.

Phantom

• Transaction T1 reads a set of data items
satisfying some <search condition>.

• Transaction T2 then creates data items

that satisfy T1’s <search condition> and
commits.

• If T1 then repeats its read with the same
<search condition>, it gets a set of data

items different from the first read.

5

Choosing isolation level

• Within a transaction we can choose the
isolation level:

where X is one of

SET TRANSACTION ISOLATION LEVEL X;

• SERIALIZABLE

• READ COMMITTED

• READ UNCOMMITTED

• REPEATABLE READ

Isolation levels - differences

Dirty reads Non-repeatable reads Phantoms

READ UNCOMMITTED Yes Yes Yes

READ COMMITTED No Yes Yes

REPEATABLE READ No No Yes

SERIALIZABLE No No No

What kinds of interference are possible?

SERIALIZABLE

• If a transaction is run with isolation level
SERIALIZABLE, then no other transaction

may interfere with it in any way.

– Examples:

If two room booking transactions are run serializable,
then a booking for a room that was listed as free will

always succeed, and transactions must wait for other

transactions to finish.

In the min-max example, we always get a value that is
correct at some point in time, either before or after the

updating.

READ COMMITTED

• If a transaction is run with isolation level
READ COMMITTED, then the transaction

allows other transactions to modify the

database while running.

• Anything that is committed by another

transaction affects the reads of this

transaction.

Quiz!

If we run two room booking transactions,
(list)(book), in parallel with isolation
level READ COMMITTED, what could

happen?

One transaction could book a room after the
other had listed it as free, and the second

booking may fail.
On the other hand, no transaction must wait

for any other to finish.

Quiz again!

If we run the first transactions of the min-
max example, ((min)(max) and
(ins)(del)), as READ COMMITTED,

what could happen?

The update could be done between min and max, which
means we could get the value -1.
If the updating is run SERIALIZABLE, we could not see

the state between since the changes would not be
committed, so the value 5 is not possible.

6

READ UNCOMMITTED

• If a transaction is run with isolation level
READ UNCOMMITTED, then the transaction

allows other transactions to modify the

database while running.

• Anything that is changed by another

transaction affects the reads of this

transaction, even if the other transaction

has not yet committed!

Quiz!

If we extend the room booking transaction with a
confirmation, i.e. (list)(book)(confirm),

and run two in parallel with isolation level READ

UNCOMMITTED, what could happen?

Same as with READ COMMITTED, except that

if the user of the first transaction changes her

mind at confirmation, thus causing a roll-back,
the second user could be told that the room is

booked even though it never was!

Quiz again!

If we run the first transactions of the min-max
example as READ UNCOMMITTED, what could

happen?

The update could be done between (min) and (max),

which means we could get the value -1.
Even if the updating is run SERIALIZABLE, we could

see the state between (ins) and (del), so the value 5
is also possible in this case!

Remember: Isolation level is a personal choice. Only because

the min-max transaction is read-only can we run it in the
middle of a serializable transaction!

REPEATABLE READ

• If a transaction is run with isolation level
REPEATABLE READ, it works like read

committed, except:

• If the transaction reads more than once,
we are guaranteed to get at least the

same tuples again (though we could get

more).

Quiz!

If we run two room booking transactions,
(list)(book), in parallel with isolation
level REPEATABLE READ, what would

happen?

Exactly the same thing as for READ
COMMITTED, since we only read once!

Quiz again!

If we run the first transactions of the min-max
example as REPEATABLE READ, what could

happen?

If the update is done between (min) and (max), we will
still see the deleted value when doing (max), so we can

only get the value 2.

… but if we do (max)(min) instead, we would get the value 5…

7

Summary transactions

• DBMS must ensure that different
processes don’t interfere with each other!
– ”ACID”: Atomicity, Consistency, Isolation,

Durability.

– The isolation levels of transactions may vary.
• Serializable

• Read Committed

• Read Uncommitted

• Repeatable Read

– Isolation level affects only that transaction!

Exam – Transactions

”Here are some transactions that run in parallel. …”

• What will the end results given by the transactions be?

• What could happen if they were not run as
transactions?

Database Authorization

Authorization

• Not every user can be allowed to do
everything.

– Some data are secret and may only be seen

by some users.

– Some data are high integrity and may only be

modified by certain users.

Database vs file system

• A (UNIX) file system has:

– Privileges on files.

– Three different privileges: read, write, execute

– Three levels of access: owner, group, all

• A database has:

– Privileges on schema elements (tables, views,

triggers, etc.)

– Nine different privileges.

– Any number of levels of access – each user can be
given different access.

Quiz!

Name the nine different privileges!

SELECT

INSERT

DELETE

UPDATE

REFERENCE

TRIGGER

EXECUTE

USAGE

UNDER

8

Privileges

• SELECT (attributes) ON table

– Allows the user to select data from the specified table.

– Can be parametrized on attributes, meaning the user
may only see certain attributes of the table.

• INSERT (attributes) ON table

– Allows the user to insert tuples into the table.

– Can be parametrized on attributes, meaning the user
may only supply values for certain attributes of the

table. Other attributes are then set to NULL.

Privileges

• DELETE ON table

– Allows the user to delete tuples from the

table.

– Cannot be parametrized on attributes.

• UPDATE (attributes) ON table

– Allows the user to update data in the table.

– Parametrizing means the user may only

update values of certain attributes.

Quiz!

What does the REFERENCE privilege on

(attributes in) a table do, and why is it

needed?

It allows a user to reference that table from
foreign key constraints, checks and assertions.

It is needed since creating a foreign key
constraint restricts update and deletion on the

referenced table.
Also knowing some value exists in a table is not the same
as knowing what values exist in that table…

Privileges

• TRIGGER ON table

– Allows the user to create triggers for events on that
table.

• EXECUTE ON procedure

– Allows the user to execute the procedure or function,
and use it in declarations.

• USAGE ON type

– Used for non-relation elements, e.g. types – allows a
user to use these elements in declarations.

• UNDER ON type

– Used on types – allows a user to create a subtype of
the given type.

Quiz!

What privileges are needed to perform the

following insertion?

INSERT INTO Lectures(course, period, weekday)

SELECT course, period, ’Monday’

FROM GivenCourses G

WHERE NOT EXISTS

(SELECT course, period

FROM Lectures L

WHERE L.course = G.course

AND L.period = G.period

AND weekday = ’Monday’);

We need privileges INSERT on Lectures(course, period,
weekday), SELECT on GivenCourses(course, period), and

SELECT on Lectures(course, period, weekday).

Quiz!
Assume we have written this trigger. What privileges are

now needed in order to insert values into DBLectures?

CREATE TRIGGER AddDBLecture

INSTEAD OF INSERT ON DBLectures

REFERENCING NEW ROW AS new

FOR EACH ROW

INSERT INTO Lectures

VALUES (’TDA357’, 2, new.weekday,

new.hour, new.room);

INSERT ON DBLectures and nothing else. However, the user
that created the trigger must also have INSERT ON Lectures

and TRIGGER ON DBLectures.

9

EXECUTE and TRIGGER
• When writing a trigger, the body may perform

selections and modifications.
– The user who writes the trigger must have all the

necessary privileges to perform those operations,
plus the TRIGGER privilege.

– The user that sets off the trigger needs only the
privilege to perform the triggering event (e.g. an
insertion). Everything that happens in the trigger is
considered done by its creator.

• The same thing goes for procedures and
functions – it is the privileges of the creator that
decides what operations may be performed, and
the user needs only EXECUTE.

Granting privileges

• You have all possible privileges on
elements that you have created.

• You may grant privileges to other users on
those elements.
– A user is referred to by an authorization ID,

which is typically a user name.

– There is a special authorization ID, public

– Granting a privilege to public makes it
available to all users.

GRANT statement

• Granting a privilege in SQL:

– Example:

GRANT list of privileges

ON element

TO list of authorization Ids;

GRANT SELECT(course, period, teacher)

ON GivenCourses

TO public;

WITH GRANT OPTION

• A user that can grant privileges on some
element can choose to grant WITH GRANT
OPTION.

– The grantee can then grant this privilege

further.

– Example:

GRANT SELECT(course, period, teacher)

ON GivenCourses

TO nibro WITH GRANT OPTION;

Revoking privileges

• Privileges can be revoked with the inverse

statement:

• Your grant of these privileges can no longer be

used by these users to justify their use of the

privilege.
– But they may still have the privilege because they have it from

another independent source.

REVOKE list of privileges

ON element

FROM list of authorization Ids;

Quiz!

What happens if we revoke a privilege from
a user who has it WITH GRANT OPTION,

and who has given it further?

We have two choices: CASCADE or RESTRICT.

The first means we revoke the privilege from all

those other users as well, while the latter means
the revocation will fail with an error.

Cf. deleting rows from a table that is referenced.

10

Grant diagrams

• Nodes = user + privilege + option

– Option is either owner, WITH GRANT

OPTION, or neither.

– UPDATE ON T, UPDATE(a) ON T,

UPDATE(b) ON T and UPDATE ON T WITH

GRANT OPTION all live in different nodes.

• Edge X → Y means that node X was used

to grant Y.

Example: A:
SELECT

ON
Courses

**

C:
SELECT (code)

ON
Courses

C:
SELECT

ON
Courses

B:
SELECT(code)

ON
Courses

*

** means A

is the owner
of this

privilege.* means B has

this privilege
WITH GRANT

OPTION.

Arrow means B

has this privilege
from A.

Manipulating edges

• If A grants P to B, we draw an edge from AP* (or

AP**) to BP(* if with grant option).

• Revoking a privilege means deleting the edge

corresponding to the privilege.

• Fundamental rule: User U has privilege P as

long as there is a path from XP** to either UP,

UP* or UP**, where X is the owner of P.

– Note that X could be U, in which case the path is 0
steps.

Example:
A:

SELECT

ON
Courses

**

B:
SELECT(code)

ON
Courses

*

C:
SELECT (code)

ON
Courses

*

C:
SELECT

ON
Courses

A revokes
SELECT(code)

ON Courses

from B.

Even though C

had granted the
privilege to B,

both nodes are

deleted since
they are cut off
from the root.

C still retains

SELECT ON
Courses, but
without the

option to grant
it further.

Summary Authorization

• Privileges in SQL

– SELECT, INSERT, DELETE, UPDATE,

REFERENCE, TRIGGER, EXECUTE …

• Granting and revoking privileges

– Authentication IDs, public

– WITH GRANT OPTION

• Grant diagrams

