
Databases TDA357/DIT620

Graham Kemp

kemp@chalmers.se

Room 6475, EDIT Building

Course Book

"Database Systems:
The Complete Book, 2E",
by Hector Garcia-Molina,
Jeffrey D. Ullman,
and Jennifer Widom

Approx. chapters 1-12

Learning outcomes (“goals”)

• Discuss and use features of different data models: the entity-
relationship model, the relational model and the semi-structured
model.

• Apply design theory for relational databases.

• Describe the effect of indexes and transactions in a relational
database.

• Describe how access can be controlled via user authorisation.

• Implement a database design using a data definition language.

• Query and modify data using a data manipulation language.

• Express queries in relational algebra.

• Implement a database application in a host language.

• Construct an entity-relationship diagram for a given domain.

• Design and implement a database application that meets given
requirements.

Examination

• Written exam
– Tuesday 13 January 2015, 14:00-18:00 (but check Student Portal)

– 60 points (3/4/5 = 24/36/48, G/VG = 24/42)

• Four assignments to be submitted
– we recommend that you work in pairs

– work must be submitted via the ’fire’ system

– obtain Oracle username and password via ’fire’ system

Course Web Page

http://www.cse.chalmers.se/edu/course/TDA357/

A database is …

• a collection of data

• managed by specialised software called a
database management system (DBMS)
(or, informally, a “database system”)

• needed for large amounts of persistent,
structured, reliable and shared data

Banking, ticket reservations, customer

records, sales records, product records,

inventories, employee records, address

books, demographic records, student

records, course plans, schedules,

surveys, test suites, research data,

genome bank, medicinal records, time

tables, news archives, sports results, e-

commerce, user authentication systems,

web forums, www.imdb.com, the world

wide web, …

Why a whole course in Databases?

Databases are
everywhere!

Examples

• Banking
– Drove the development of DBMS

• Industry
– Inventories, personnel records, sales …

– Production Control

– Test data

• Research
– Sensor data

– Geographical data

– Laboratory information management systems

– Biological data (e.g. genome data)

File-oriented information system

Payroll

records

Customer

records

Employee

records

Inventory

records

Sales

records

Customer
service

department

Payroll
department

Personnel
department

Marketing
department

Purchasing
department

Problems with working with files

• Redundancy

– Updates

– Wasted space

• Changing a data format will require all
application programs that read/write these
files to be changed.

• Sharing information between departments
can be difficult.

Database-oriented information

system

Integrated

database

Customer
service

department

Payroll
department

Personnel
department

Marketing
department

Purchasing
department

Typical Computer System

Database

User interface Application programs

SQL

SQL

(html/java/xml/...)

Peripherical unit (e.g. Sensor)

Other system

TCP/IP

Centralised control of data

• amount of redundancy can be reduced
– less inconsistency in the stored data

• stored data can be shared

• standards can be enforced

• security restrictions can be applied

• data integrity can be maintained
– validation done in one place

• conflicting requirements can be balanced

• provides data independence
– can change storage structure without affecting

applications

Motivation for database systems
Needed for large amounts of persistent, structured, reliable and shared data

(Ted Codd, 1973)

• Large amounts:
– needs indexing for fast access

– needs a load utility

• Persistent:
– needs schema definition of types which evolves

• Structured:
– storage schema held with data

– query language (e.g. SQL) independent of storage

• Shared:
– locking mechanism for concurrent update

– access control via DBMS

– centralised integrity checking

• Reliable:
– changes to disc pages are logged

– commit protects against program of disc crash

– can undo (rollback) uncommitted updates

Traditional File Structures

A short digression …

UNIX file management

Actual organisation is hidden

• Just as the file management system in an
operating system gives the users the
illusion that a text file is stored on disc as a
long consecutive sequence of characters
…

• … a database management system gives
the users the illusion that their data are
stored on disc in accordance with a data
model.

Data models

• Storing data in a computer system
requires describing the data according to
some data model, in a form which can be
represented directly within the computer.

• A data model specifies the rules
according to which data are structured and
also the associated operations that are
permitted.

Why not a file system?

File systems are

• Structured

• Persistant

• Changable

• Digital

… but oh so inefficient!

Data models: brief overview

• “No data model”
– Flat files

• “Classical” data models
– Hierarchical (tree)

– Network (e.g. CODASYL) (graph)

– Relational (Codd, 1970) (tables)

• Semantic data models, e.g.
– Entity-Relationship model (Chen, 1976)

– Functional Data Model (Shipman, 1981)

– SDM (Hammer and McLeod, 1981)

Database Management Systems

• Hierarchical databases:
– ”Easy” to design if only one hierarchy

– Efficient access

– Low-level view of stored data

– Hard to write queries

• Network databases:
– ”Easy” to design

– Efficient access

– Low-level view of stored data

– Very hard to write queries

Database Management Systems

Relational databases:
– Hard to design
– Use specialized storage techniques

– Efficient access

– Provides high-level views of stored data
based on mathematical concepts

– Easy to write queries
– Not all data fit naturally into a tabular structure

• Other databases:
– Some based on a semantic data models

– Object-oriented database management systems
(OODBMS)

– “NoSQL” (“not only SQL”)

Relational DBMSs

• Very simple model

• Familiar tabular structure

• Has a good theoretical foundation from
mathematics (set theory)

• Industrial strength implementations, e.g.

– Oracle, Sybase, MySQL, PostgreSQL,

Microsoft SQL Server, DB2 (IBM mainframes)

• Large user community

Database system architecture

Data Definition Language

“A language that allows the DBA [database

administrator] or user to describe and name the

entities, attributes and relationships required for

the application, together with any associated

integrity or security constraints.”
[Definition from Connolly and Begg (2002) Database Systems: A Practical Approach to

Design Implementation and Management. Third Edition. Addison Wesley.]

DDL statements are compiled into metadata

(“data about data”).

Data Manipulation Language

“A language that provides a set of operations to support the basic data
manipulation operations on data held in the database.”

[Definition from Connolly and Begg (2002) Database Systems: A Practical Approach to
Design, Implementation and Management. Third Edition. Addison Wesley.]

Data manipulation operations include:

• inserting new data into the database;
• modifying data stored in the database;
• deleting data from the database;
• retrieving data from the database.

The part of the DML involved with data retrieval is called the
query language.

Database system studies

1. Design of databases, e.g.
– Entity-Relationship modelling

– relational data model

– dependencies and normalisation

– XML and its data model

2. Database programming, e.g.
– relational algebra

– data manipulation and querying in SQL

– application programs

– querying XML

3. Database implementation, e.g.
– indexes, transaction management, concurrency control,

recovery, etc.

Course Objectives

Design

Construction

Applications

Usage

Course Objectives – Design

When the course is through, you should

– Given a domain, know how to design a
database that correctly models the domain
and its constraints

”We want a database that we can use for
scheduling courses and lectures. This is
how it’s supposed to work: …”

Course Objectives – Design

• Entity-relationship (E-R) diagrams

• Functional Dependencies

• Normal Forms

Course

code

dept

name

responsible

Room

roomNr

name

building

InOf Lecture

day hour

Course Objectives – Construction

When the course is through, you should

– Given a database schema with related

constraints, implement the database in a

relational DBMS

Courses(code, name, dept, examiner)

Rooms(roomNr, name, building)

Lectures(roomNr, day, hour, course)

roomNr -> Rooms.roomNr

course -> Courses.code

Course Objectives – Construction

• SQL Data Definition Language (DDL)

CREATE TABLE Lectures

(

lectureId INT PRIMARY KEY,

roomId REFERENCES Rooms(roomId),

day INT CHECK (day BETWEEN 1 AND 7),

hour INT CHECK (hour BETWEEN 0 AND 23),

course REFERENCES Courses(code),

UNIQUE (roomId, day, hour)

);

Course Objectives – Usage

When the course is through, you should

– Know how to query a database for relevant
data using SQL

– Know how to change the contents of a
database using SQL

”Add a course ’Databases’ with course code ’TDA357’,
given by …”

”Give me all information about the course ’TDA357’”

Course Objectives – Usage

• SQL Data Manipulation Language (DML)

INSERT INTO Courses VALUES

(’TDA357’, ’Databases’,’CS’, ’Niklas Broberg’);

• Querying with SQL

SELECT * FROM Courses WHERE code = ’TDA357’;

Course Objectives – Applications

When the course is through, you should

– Know how to connect to and use a database

from external applications

”We want a GUI application for booking rooms

for lectures …”

Course Objectives – Applications

• JDBC

// Assemble the SQL command for inserting the

// newly booked lecture.

String myInsert = ”INSERT INTO Lectures ”

+ ”VALUES (” + room + ”, ”

+ day + ”, ” + hour + ”, ” + course + ”)”;

// Execute the SQL command on the database

Statement stmt = myDbConn.createStatement();

stmt.executeUpdate(myInsert);

Course Objectives - Summary

You will learn how to

• design a database

• construct a database from a schema

• use a database through queries and
updates

• use a database from an external
application

Lab Assignment

• Write a ”student portal” application in Java
– Part I: Design

• Given a domain description, design a database schema
using an E-R diagram and functional dependencies.

– Part II: Construction and Usage

• Implement the schema from Part I in Oracle.

• Insert relevant data.

• Create views.

– Part III: Construction

• Create triggers.

– Part IV: Interfacing from external Application

• Write a Java application that uses the database from Part III.

Database design

Relations

Course Objectives

Design

Construction

Application

Usage

Course Objectives – Design

When the course is through, you should

– Given a domain, know how to design a
database that correctly models the domain
and its constraints

”We want a database that we can use for
scheduling courses and lectures. This is
how it’s supposed to work: …”

Designing a database

• ”Map” the domain, find out what the
database is intended to model

– The database should accept all data that are

possible in reality

– The database should agree with reality and

not accept impossible or unwanted data

• Construct the ”blueprint” for the database
– the database schema

Relation Schemas

• In the relational data model, a design
consists of a set of relation schemas.

• A relation schema has

– a name, and

– a set of attributes (+ types):

Courses(code, name, teacher)

name

attributes

Schema vs Instance

• Schema (or intension of a relation)
– name and attributes of a relation

Courses(code, name, teacher)

• Instances (or extension of a relation)
– the actual data
– a set of tuples:

{ (’TDA357’, ’Databases’, ’Niklas Broberg’),

(’TIN090’, ’Algorithms’, ’Devdatt Dubhashi’) }

(Like a blueprint for a house, and the actual house built from it.)

tuples

From schema to database

• The relations of the database schema become

the tables when we implement the database in a

DBMS. The tuples become the rows:

Courses(code, name, teacher)

code name teacher

’TDA357’ ’Databases’ ’Niklas Broberg’

’TIN090’ ’Algorithms’ ’Devatt Dubhashi’

relation schema
table instance

Keys

• Relations have keys – attributes whose
values uniquely determine the values of all
other attributes in the relation.

Courses(code, name, teacher)

{(’TDA357’, ’Databases’, ’Niklas Broberg’),

(’TDA357’, ’Algorithms’, ’Devdatt Dubhashi’)}

key

Composite keys

• Keys can consist of several attributes

Courses(code, period, name, teacher)

{(’TDA357’, 2, ’Databases’, ’Niklas Broberg’),

(’TDA357’, 4, ’Databases’, ’Rogardt Heldal’)}

Quiz time!

What’s wrong with this schema?

Courses(code, period, name, teacher)

{(’TDA357’, 2, ’Databases’, ’Niklas Broberg’),

(’TDA357’, 4, ’Databases’, ’Rogardt Heldal’)}

Courses(code, name)

CourseTeachers(code, period, teacher)

Redundancy!

Next Lecture

More on Relations

Entity-Relationship diagrams

