Databases TDA357/DIT620

Graham Kemp
kemp@chalmers.se
Room 6475, EDIT Building

Course Book

"Database Systems:
The Complete Book, 2E",
by Hector Garcia-Molina,
Jeffrey D. Ullman,
and Jennifer Widom

Approx. chapters 1-12

DATABASE

................

M G il M

Learning outcomes (“goals”)

Discuss and use features of different data models: the entity-
relationship model, the relational model and the semi-structured
model.

Apply design theory for relational databases.

Describe the effect of indexes and transactions in a relational
database.

Describe how access can be controlled via user authorisation.
Implement a database design using a data definition language.
Query and modify data using a data manipulation language.
Express queries in relational algebra.

Implement a database application in a host language.
Construct an entity-relationship diagram for a given domain.

Design and implement a database application that meets given
requirements.

Examination

« Written exam
— Tuesday 13 January 2015, 14:00-18:00 (but check Student Portal)
— 60 points (3/4/5 = 24/36/48, G/VG = 24/42)

« Four assignments to be submitted
— we recommend that you work in pairs
— work must be submitted via the ‘fire’ system
— obtain Oracle username and password via ‘fire’ system

Course Web Page

http://www.cse.chalmers.se/edu/course/TDA357/

A database is ...

* a collection of data

* managed by specialised software called a
database management system (DBMS)
(or, informally, a “database system”)

* needed for large amounts of persistent,
structured, reliable and shared data

Why a whole course in Databases?

Databasesare
everywhere!

Examples

« Banking
— Drove the development of DBMS
* |Industry

— Inventories, personnel records, sales ...
— Production Control
— Test data

* Research
— Sensor data
— (Geographical data
— Laboratory information management systems
— Biological data (e.g. genome data)

File-oriented information system

Customer Payroll Employee Inventory Sales
records records records records records
Customer : :
: Payroll Personnel | |Purchasing| | Marketing
service
department| |department| [department| |department

department

Problems with working with files

» Redundancy
— Updates
— Wasted space
« Changing a data format will require all

application programs that read/write these
files to be changed.

» Sharing information between departments
can be difficult.

Database-oriented information
sysiem

Customer
service
department

Marketing
department

Integrated
database

Payroll Purchasing
department department

Personnel
department

Typical Computer System

Cierntertace Application programs Peripherical unit (e.g. Sensor)
~ A

Other system
'\ TCP/IP

‘ Database

7‘%
~
lw/mm

Centralised control of data

amount of redundancy can be reduced
— less inconsistency in the stored data

stored data can be shared

standards can be enforced

security restrictions can be applied

data integrity can be maintained

— validation done in one place

conflicting requirements can be balanced

provides data independence

— can change storage structure without affecting
applications

Motivation for database systems

Needed for large amounts of persistent, structured, reliable and shared data
(Ted Codd, 1973)

Large amounts:
— needs indexing for fast access
— needs a load utility
» Persistent:
— needs schema definition of types which evolves
« Structured:
— storage schema held with data
— query language (e.g. SQL) independent of storage
« Shared:
— locking mechanism for concurrent update
— access control via DBMS
— centralised integrity checking
* Reliable:
— changes to disc pages are logged
— commit protects against program of disc crash
— can undo (rollback) uncommitted updates

Traditional File Structures

A short digression ...

UNIX file management

direct 1 .
direct 2 \l
direct 3 [—

direct 4 [T
direct 5 T
direct &

direct 7

direct 8

direct 9 i T
direct 10 ' 7 1
single indirect / :

double indirect NN, e

triple indirect e

7
i\

Index Blocks Data Blocks

Actual organisation is hidden

 Just as the file management system in an
operating system gives the users the
illusion that a text file is stored on disc as a
long consecutive sequence of characters

* ... adatabase management system gives
the users the illusion that their data are
stored on disc in accordance with a data
model.

Data models

 Storing data in a computer system
requires describing the data according to
some data model, in a form which can be
represented directly within the computer.

» A data model specifies the rules
according to which data are structured and
also the associated operations that are
permitted.

Why not a file system?

File systems are
 Structured

» Persistant

» Changable

» Digital

... but oh so inefficient!

Data models: brief overview

* “No data model”
— Flat files

 “Classical” data models

— Hierarchical (tree)
— Network (e.g. CODASYL) (graph)
— Relational (Codd, 1970) (tables)

« Semantic data models, e.qg.
— Entity-Relationship model (Chen, 1976)
— Functional Data Model (Shipman, 1981)
— SDM (Hammer and McLeod, 1981)

Database Management Systems

» Hierarchical databases:
— "Easy” to design if only one hierarchy
— Efficient access
— Low-level view of stored data
— Hard to write queries

* Network databases:
— "Easy” to design
— Efficient access
— Low-level view of stored data
— Very hard to write queries

Database Management Systems

Relational databases:
— Hard to design
— Use specialized storage technigques
— Efficient access

— Provides high-level views of stored data
based on mathematical concepts

— Easy to write queries
— Not all data fit naturally into a tabular structure

 Other databases:
— Some based on a semantic data models

— Object-oriented database management systems
(OODBMS)

— “NoSQL” (“not only SQL”)

Relational DBMSs

Very simple model
Familiar tabular structure

Has a good theoretical foundation from
mathematics (set theory)
Industrial strength implementations, e.qg.

— Oracle, Sybase, MySQL, PostgreSQL,
Microsoft SQL Server, DB2 (IBM mainframes)

Large user community

Database system architecture

Schema Source File

) Diata Files Queries
[or extension)
J F
r y

¥ \ 3
Bulk Load Query Language
Ltility Interpreter and Optimiser
f)
¥ ¥ ¥
Schema
Translator Access Control Indexing and Recovery
. Storage Locking Transaction
Validate Integrity Allocation Rollback/Commit
Checks (B-trees, etc.)
1
'
¥

Buffer Manager
/_;r

System Tables
Schema Definition
Storage Schema
Miew Definitions

DE File DE File
Tables in Tables in

@ Area Area 2

Transaction

Page Change
Log Files

Data Definition Language

“A language that allows the DBA [database
administrator] or user to describe and name the
entities, attributes and relationships required for
the application, together with any associated

integrity or security constraints.”

[Definition from Connolly and Begg (2002) Database Systems: A Practical Approach to
Design Implementation and Management. Third Edition. Addison Wesley.]

DDL statements are compiled into metadata
(“data about data”).

Data Manipulation Language

“A language that provides a set of operations to support the basic data
manipulation operations on data held in the database.”

[Definition from Connolly and Begg (2002) Database Systems: A Practical Approach to
Design, Implementation and Management. Third Edition. Addison Wesley.]

Data manipulation operations include:

« inserting new data into the database;
« modifying data stored in the database;
« deleting data from the database;

« retrieving data from the database.

The part of the DML involved with data retrieval is called the
query language.

Database system studies

1. Design of databases, e.g.
— Entity-Relationship modelling
— relational data model
— dependencies and normalisation
— XML and its data model

2. Database programming, e.g.
— relational algebra
— data manipulation and querying in SQL
— application programs
— querying XML
3. Database implementation, e.g.

— indexes, transaction management, concurrency control,
recovery, etc.

Course Objectives

S

Applications

=

T~
S

Construction

~..

Usage

Course Objectives — Design
When the course is through, you should

— Given a domain, know how to design a
database that correctly models the domain
and its constraints

"We want a database that we can use for
scheduling courses and lectures. This is
how it’'s supposed to work: ...”

Course Objectives — Design

 Entity-relationship (E-R) diagrams
* Functional Dependencies
 Normal Forms

GQame
Course @—--— Room Game

Course Objectives —
When the course is through, you should

— Given a database schema with related

constraints, implement the database in a
relational DBMS

Courses (code, name, dept, examiner)

Rooms (roomNr, name, building)

Lectures (roomNr, day, hour, course)
roomNr -—-> Rooms.roomNr
course -> Courses.code

Course Objectives —

SQL Data Definition Language (DDL)

CREATE TABLE Lectures

(

) ;

lectureId INT PRIMARY KEY,

roomld REFERENCES Rooms (roomId),

day INT CHECK (day BETWEEN 1 AND 7),
hour INT CHECK (hour BETWEEN O AND 23),
course REFERENCES Courses (code),

UNIQUE (roomId, day, hour)

Course Objectives — Usage
When the course is through, you should

— Know how to query a database for relevant
data using SQL

— Know how to change the contents of a
database using SQL

"Add a course 'Databases’ with course code 'TDA357’,
given by ...”

"Give me all information about the course 'TDA357"”

Course Objectives — Usage
« SQL Data Manipulation Language (DML)

INSERT INTO Courses VALUES
(' TDA357’, ’'Databases’,’CS’, ’'Niklas Broberg’);

« Querying with SQL

SELECT * FROM Courses WHERE code = ’'TDA357’;

Course Objectives —

When the course is through, you should

— Know how to connect to and use a database
from external applications

"We want a GUI application for booking rooms
for lectures ...”

Course Objectives —

- JDBC

// Assemble the SQL command for inserting the
// newly booked lecture.

String myInsert = "“"INSERT INTO Lectures ”
+ "VALUES (" + room + ", ”
+ day + ”, ” + hour + 7, ” + course + ")"”;

// Execute the SQL command on the database
Statement stmt = myDbConn.createStatement () ;

stmt . executeUpdate (myInsert) ;

Course Objectives - Summary

You will learn how to
» design a database
a database from a schema

* use a database through queries and
updates

e Use a database from an external

Lab Assignment

» Write a "student portal” application in Java

— Part |: Design

« Given a domain description, design a database schema
using an E-R diagram and functional dependencies.

— Part Il: and Usage
« Implement the schema from Part | in Oracle.
* Insert relevant data.
» Create views.

— Part llI:
« Create triggers.

— Part IV: Interfacing from external
« Write a Java application that uses the database from Part lll.

Database design

Relations

Course Objectives

(=

Application

=

T~
~

Construction

~

Usage

Course Objectives — Design
When the course is through, you should

— Given a domain, know how to design a
database that correctly models the domain
and its constraints

"We want a database that we can use for
scheduling courses and lectures. This is
how it’'s supposed to work: ...”

Designing a database

« "Map” the domain, find out what the
database is intended to model

— The database should accept all data that are
possible in reality

— The database should agree with reality and
not accept impossible or unwanted data

» Construct the "blueprint” for the database
— the database schema

Relation Schemas

* In the relational data model, a design
consists of a set of relation schemas.

* A relation schema has
— a name, and
— a set of attributes (+ types):

Courses (code, name, teacher)

N -
name N

attributes

Schema vs Instance

« Schema (or intension of a relation)
— name and attributes of a relation

Courses (code, name, teacher)
* Instances (or extension of a relation)

— the actual data
— a set of tuples:

{ ('TDA357’, ’'Databases’, ’'Niklas Broberg’),
(' TINO9O’, 'Algorithms’, ’'Devdatt Dubhashi’) }

tuples

(Like a blueprint for a house, and the actual house built from it.)

From schema to database

* The relations of the database schema become
the tables when we implement the database in a
DBMS. The tuples become the rows:

Courses (code, name, teacher)

h

relation schema

table instance

Wl
code name teacher
"TDA357’ '‘Databases’ 'Niklas Broberg’

"TINO9O’ ‘Algorithms’ '‘Devatt Dubhashi’

Keys

* Relations have keys — attributes whose
values uniquely determine the values of all
other attributes in the relation.

Courses (code, name, teacher)

key

{ ('TDA357’, ’'Databases’, ’'Niklas Broberg’),
(' TDA357, "Atgorithmsi—~Devdatt Dubhashi’) }

Composite keys

« Keys can consist of several attributes

Courses (code, period, name, teacher)

{ ("TDA357’, 2, ’'Databases’, ’'Niklas Broberg’),
(' TDA357’, 4, ’'Databases’, ’'Rogardt Heldal’)}

Quiz time!

What's wrong with this schema®?

Courses (code, period, name, teacher)

{ ("TDA357’, 2, 'Databases’, ’'Niklas Broberg’),
(" TDA357’, 4, 'Databases’, 'Rogardt Heldal’)}
Redundancy!

Courses (code, name)
CourseTeachers (code, period, teacher)

Next Lecture

More on Relations
Entity-Relationship diagrams

