
Exercise Session 5

8 December

1 Authorization, SQL Injection, Transactions (3 parts, 12p)

Consider an existing database with the following database definition in a PostgreSQL DBMS:

CREATE TABLE Users (

id INTEGER PRIMARY KEY ,

name TEXT ,

password TEXT

);

CREATE TABLE UserStatus (

id INTEGER PRIMARY KEY REFERENCES Users ,

loggedin BOOLEAN NOT NULL

);

CREATE TABLE Logbook (

id INTEGER REFERENCES Users ,

timestamp INTEGER ,

name TEXT ,

PRIMARY KEY (id , timestamp)

);

6a. A database user “Alice” is granted the following permissions:

GRANT SELECT(id , name , password) ON Users TO Al i c e ;
GRANT SELECT(id , l ogged in) ON UserStatus TO Al i c e ;
GRANT INSERT(id , l ogged in) ON UserStatus TO Al i c e ;
GRANT SELECT(id , timestamp , name) ON LogBook TO Al i c e ;

Alice now executes the following SQL statement:

INSERT INTO LogBook
SELECT u . id , 201706071400 , u . name

FROM (UserStatus us JOIN Users u ON us . id = u . id)
WHERE us . l ogged in = True ;

We want Alice to only have exactly the privileges that are necessary to complete this SQL statement. Does
Alice have the correct privileges? What minimal set of permissions should she be granted instead, if not
the same as listed above? (4p)

6b. Users of a web application are allowed to query this database for a certain user id. This functionality is
implemented in JDBC using the following code fragment:

. . .
S t r ing query = ”SELECT ∗ FROM UserStatus WHERE id = ’ ” + user input + ” ’ ” ;
Statement stmt = conn . createStatement () ;
Resu l tSet r s = stmt . executeQuery (query) ;
. . .

The userinput variable is controlled directly by an attacker. What can an attacker input into userinput

so that the SQL query returns all data in UserStatus? What is this specific security problem called? How
should the above code be corrected to prevent this problem? (4p)

1 of 2

6c. The following transaction calculates the total number of entries in UserStatus as the sum of the number of
logged-in and not logged-in users.

BEGIN TRANSACTION ISOLATION LEVEL READ COMMITTED;
SELECT

(SELECT COUNT(∗) FROM UserStatus WHERE l ogged in = True)
+
(SELECT COUNT(∗) FROM UserStatus WHERE l ogged in = False) ;

COMMIT;

The used transaction isolation level is not sufficient to ensure an accurate count of entries in UserStatus.
Why not? Give all isolation levels that are sufficient so that the query works as expected. (4p)

2 of 2

	Authorization, SQL Injection, Transactions (3 parts, 12p)

