
Lecture 1

Database design

Relations

Course Objectives - Design

When the course is through, you should

 Given a domain, know how to design a database that correctly models the domain and its constraints

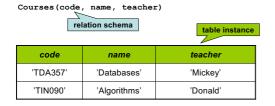
"We want a database that we can use for scheduling courses and lectures. This is how it's supposed to work: ..."

Designing a database

- "Map" the domain, find out what the database is intended to model
 - The database should accept all data possible in reality
 - The database should agree with reality and not accept impossible or unwanted data
- Construct the "blueprint" for the database
 - the database schema

Database Schemas

- A database schema is a set of relation schemas
- A relation schema has a name, and a set of attributes (+ types):


Schema vs Instance

- **Schema** the logical structure of the relation (or database)
 - Courses(code, name, teacher)
- *Instance* the actual content at any point in time

(like a blueprint for a house, and the actual house built from it.)

From schema to database

 The relations of the database schema become the tables when we implement the database in a DBMS. The tuples become the rows:

Why relations?

- Relations often match our intuition regarding data
- Very simple model
- Has a good theoretical foundation from mathematics (set theory)
- The abstract model underlying SQL, the most important database language today

Keys

 Relations have keys – special attributes whose values uniquely determine the values of all other attributes in the relation.

Composite keys

Keys can consist of several attributes

```
Courses(<u>code</u>, <u>period</u>, name, teacher)

{('TDA357', 2, 'Databases', 'Mickey'),
  ('TDA357', 3, 'Databases', 'Tweety')}
```

Quiz time! What's wrong with this schema? Courses(code, period, name, teacher) {('TDA357', 2, 'Databases' 'Mickey'), 'Tweety')} Redundancy! Courses(code, name) CourseTeachers(code, period, teacher)

"Schedules" database

"We want a database for an application that we will use to schedule courses. ..."

- Course codes and names, and the period the courses are given
- The number of students taking a course
- The name of the course responsible
- The names of all lecture rooms, and the number of seats in them
- Weekdays and hours of lectures

First attempt

- Course codes and name, and the period the course is given
- The number of students taking a course
- The name of the course responsible
- The names of all lecture rooms, and the number of seats in them
- Weekday and hour of lectures

Schedules(code, name, year, period,
 numStudents, teacher, room, numSeats,
 weekday, hour)

Quiz: What's a key of this relation?

First attempt

Schedules(<u>code</u>, name, <u>year</u>, <u>period</u>, numStudents, teacher, <u>room</u>, numSeats, <u>weekday</u>, hour)

code	name	year	per.	#st	teacher	room	#seats	day	hour
TDA357	Database s	2017	2	200	Mickey	HB2	186	Tuesday	10:00
TDA357	Database s	2018	2	200	Mickey	HB2	186	Wednesday	08:00
TDA357	Database s	2017	3	93	Tweety	HC4	216	Tuesday	10:00
TDA357	Database s	2018	3	93	Tweety	VR	228	Friday	10:00
TIN090	Algorithms	2017	1	64	Donald	HB2	186	Wednesday	08:00
TIN090	Algorithms	2018	1	64	Donald	HB2	186	Thursday	13:15

Quiz: What's wrong with this approach?

Anomalies

code	name	year	per.	#st	teacher	room	#seats	day	hour
TDA357	Databases	2017	2	200	Mickey	HB2	186	Tuesday	10:00
TDA357	Databases	2018	2	200	Mickey	HB2	186	Wednesd ay	08:00
TDA357	Databases	2017	3	93	Tweety	HC4	216	Tuesday	10:00
TDA357	Databases	2018	3	93	Tweety	VR	228	Friday	10:00
TIN090	Algorithms	2017	1	64	Donald	HB2	186	Wednesd ay	08:00
TIN090	Algorithms	2018	1	64	Donald	HB2	186	Thursday	13:15

- Redundancy same thing stored several times
- Update anomaly we must remember to update all tuples
- Deletion anomaly if no course has lectures in a room, we lose track of how many seats it has

Second attempt

Rooms (room, numSeats)

Lectures(<u>code</u>, name, <u>year</u>, <u>period</u>, numStudents, teacher, <u>weekday</u>, hour)

room	#seats
HC4	216
VR	228
HB2	186
HA4	182

code	name	year	per	#st	teacher	day	hour
TDA357	Databases	2017	2	200	Mickey	Tuesday	10:00
TDA357	Databases	2018	2	200	Mickey	Wednesday	08:00
TDA357	Databases	2017	3	93	Tweety	Tuesday	10:00
TDA357	Databases	2018	3	93	Tweety	Friday	10:00
TIN090	Algorithms	2017	1	64	Donald	Wednesday	08:00
TIN090	Algorithms	2018	1	64	Donald	Thursday	13:15

Better? No! Lost connection between Rooms and Lectures!

... and still there's redundancy in Lectures

Third attempt room #seats Rooms (room, numSeats) 228 Courses (code, name) HB2 186 CourseStudents (code, period, numStudents) CourseTeachers (code, period, teacher) Lectures(code, period, room, weekday, hour, year) code per #st TDA357 HB2 10:00 2017 code name TDA357 200 TDA357 TDA357 HB2 08:00 2018 TIN090 Algorithms TDA357 HC4 10:00 2017 TIN090 TDA357 VR 10:00 2018 Friday TIN090 HB2 08:00 2017 TDA357 HB2 13:15 2018

TIN090

Fourth attempt

 ${\tt Rooms}\,(\underline{{\tt room}}\,,\ {\tt numSeats})$

Courses(code, name)

CoursePeriods(code, period, numStudents, teacher)
Lectures(code, period, room, weekday, hour, year)

room	#seats	
HC4	216	ĺ
VR	228	İ
HB2	186	l
HA4	182	İ
		<u>.</u>

code	name
TDA357	Databases
TIN090	Algorithms

HA4	182	ΙĽ	114030	Algorithms
		_		
code	per	#st	te	acher
TDA357	2	200	Mickey	
TDA357	3	93	Tweety	
TIN090	1	64	Donald	

code	per	room	day	hour	year
TDA357	2	HB2	Tuesday	10:00	2017
TDA357	2	HB2	Wednesday	08:00	2018
TDA357	3	HC4	Tuesday	10:00	2017
TDA357	3	VR	Friday	10:00	2018
TIN090	1	HB2	Wednesday	08:00	2017
TIN090	1	HB2	Thursday	13:15	2018

Yeah, this is good!

Things to avoid!

- Redundancy
- · Unconnected relations
- Too much decomposition

Take away!

- · Not using a structured design method means it's easy to make errors.
- · Learn from the mistakes of others, then you won't have to repeat them yourself!

Summary

- A database schema is a blueprint
 - Consists of a set of relations e.g. Courses(code, name, teacher) where "Courses" is the relation name and code, name and teacher are
- A database instance holds actual data
 Tuples are instances of a relation.
 E.g. (TDA357', 'Databases', 'Mickey')
- In a DBMS, a table holds relations where:

 - Each row holds a tuple
 Each column stores a different attribute
- Keys uniquely identify the other values of a tuple in a relation
 Composite keys combine several attributes

- RedundancyUnconnected relations
- Too much decomposition

Next time, Lecture 2

More on Relations Entity-Relationship diagrams