
Formal Methods for Software Development
Introduction to Promela

Wolfgang Ahrendt

31 August 2017

FMSD: Promela /GU 170901 1 / 37

Towards Model Checking

System Model

Promela Program

byte n = 0;

active proctype P() {

...

}

active proctype Q() {

...

}

System Property

P,Q are never in their
critical section at the same time

Model
Checker

48

criticalSectP= 0 1 1
criticalSectQ= 1 0 1

FMSD: Promela /GU 170901 2 / 37

What is Promela?

Promela is an acronym

Process meta-language

Promela is a language for modeling concurrent systems

I multi-threaded, synchronisation

I shared memory as well as message passing

I few control structures, pure (side-effect free) expressions

I data structures with fixed bounds

FMSD: Promela /GU 170901 3 / 37

What is Promela?

Promela is an acronym

Process meta-language

Promela is a language for modeling concurrent systems

I multi-threaded, synchronisation

I shared memory as well as message passing

I few control structures, pure (side-effect free) expressions

I data structures with fixed bounds

FMSD: Promela /GU 170901 3 / 37

What is Promela?

Promela is an acronym

Process meta-language

Promela is a language for modeling concurrent systems

I multi-threaded, synchronisation

I shared memory as well as message passing

I few control structures, pure (side-effect free) expressions

I data structures with fixed bounds

FMSD: Promela /GU 170901 3 / 37

What is Promela?

Promela is an acronym

Process meta-language

Promela is a language for modeling concurrent systems

I multi-threaded, synchronisation

I shared memory as well as message passing

I few control structures, pure (side-effect free) expressions

I data structures with fixed bounds

FMSD: Promela /GU 170901 3 / 37

What is Promela?

Promela is an acronym

Process meta-language

Promela is a language for modeling concurrent systems

I multi-threaded, synchronisation

I shared memory as well as message passing

I few control structures, pure (side-effect free) expressions

I data structures with fixed bounds

FMSD: Promela /GU 170901 3 / 37

What is Promela Not?

Promela is not a programming language

Very small language, not intended to program real systems
(we will master most of it in today’s lecture!)

I No pointers

I No methods/procedures

I No libraries

I No GUI, no standard input

I No floating point types

I No data encapsulation

I Nondeterministic

FMSD: Promela /GU 170901 4 / 37

What is Promela Not?

Promela is not a programming language

Very small language, not intended to program real systems
(we will master most of it in today’s lecture!)

I No pointers

I No methods/procedures

I No libraries

I No GUI, no standard input

I No floating point types

I No data encapsulation

I Nondeterministic

FMSD: Promela /GU 170901 4 / 37

A First Promela Program

active proctype P() {

print f ("Hello world\n")
}

Command Line Execution

Simulating (i.e., interpreting) a Promela program

> spin hello.pml

Hello world

1 process created

I keyword proctype declares process named P

I keyword active creates an instance of P

I C-like command and expression syntax

I no “;” needed here (only for sequencing commands)

I C-like (simplified) formatted print

FMSD: Promela /GU 170901 5 / 37

A First Promela Program

active proctype P() {

print f ("Hello world\n")
}

Command Line Execution

Simulating (i.e., interpreting) a Promela program

> spin hello.pml

Hello world

1 process created

I keyword proctype declares process named P

I keyword active creates an instance of P

I C-like command and expression syntax

I no “;” needed here (only for sequencing commands)

I C-like (simplified) formatted print

FMSD: Promela /GU 170901 5 / 37

Arithmetic Data Types

active proctype P() {

int val = 123;

int rev;

rev = (val % 10) * 100 + /* % is modulo */

((val / 10) % 10) * 10 + (val / 100);

print f ("val = %d, rev = %d\n", val , rev)

}

Observations

I Data types byte, short, int, unsigned with operations +,-,*,/,%

I Expressions computed as int, then converted to container type

I No floats, no side effects, C/Java-style comments

I No string variables (strings only in print statements)

FMSD: Promela /GU 170901 6 / 37

Arithmetic Data Types

active proctype P() {

int val = 123;

int rev;

rev = (val % 10) * 100 + /* % is modulo */

((val / 10) % 10) * 10 + (val / 100);

print f ("val = %d, rev = %d\n", val , rev)

}

Observations

I Data types byte, short, int, unsigned with operations +,-,*,/,%

I Expressions computed as int, then converted to container type

I No floats, no side effects, C/Java-style comments

I No string variables (strings only in print statements)

FMSD: Promela /GU 170901 6 / 37

Booleans and Enumerations

bit b1 = 0;

bool b2 = true;

Observations

I bit numeric type containing 0, 1

I bool, true, false syntactic sugar for bit, 1, 0

FMSD: Promela /GU 170901 7 / 37

Enumerations

mtype = { red , yellow , green } //in global context

active proctype P() {

mtype light = green;

print f ("the light is %e\n", light)

}

Observations

I literals represented as non-0 byte: at most 255

I mtype stands for message type (first used for message names)

I There is at most one mtype per program

I %e “prints” mtype constant

FMSD: Promela /GU 170901 8 / 37

Control Statements

Sequence using ; as separator
(not terminator like in C/Java)

Guarded Command:
— Selection non-deterministic choice of an alternative

— Repetition loop until break (or forever)
Goto jump to a label

FMSD: Promela /GU 170901 9 / 37

Guarded Commands: Selection

active proctype P() {

byte a = 5, b = 5;

byte max , branch;

i f
:: a >= b -> max = a; branch = 1

:: a <= b -> max = b; branch = 2

f i
}

FMSD: Promela /GU 170901 10 / 37

Guarded Commands: Selection

active proctype P() {

byte a = 5, b = 5;

byte max , branch;

i f
:: a >= b -> max = a; branch = 1

:: a <= b -> max = b; branch = 2

f i
}

Command Line Execution

Trace of random simulation of multiple runs

> spin -v max.pml

> spin -v max.pml

> ...

FMSD: Promela /GU 170901 10 / 37

Guarded Commands: Selection

active proctype P() {

byte a = 5, b = 5;

byte max , branch;

i f
:: a >= b -> max = a; branch = 1

:: a <= b -> max = b; branch = 2

f i
}

Observations

I Each alternative starts with a guard (here a >= b, a <= b)

I Guards may “overlap” (more than one can be true at the same time)

I Any alternative whose guard is true is randomly selected

I When no guard true: process blocks until one becomes true

I if statements can have any number of alternatives

FMSD: Promela /GU 170901 10 / 37

Guarded Commands: Selection Cont’d

bool p;

...

i f
:: p -> ...

:: true -> ...

f i

bool p;

...

i f
:: p -> ...

:: e l se -> ...

f i

I Instance of the general case

I true can be selected
anytime, regardless of other
guards

I Special case

I else selected only if all
other guards are false

FMSD: Promela /GU 170901 11 / 37

Guarded Commands: Selection Cont’d

bool p;

...

i f
:: p -> ...

:: true -> ...

f i

bool p;

...

i f
:: p -> ...

:: e l se -> ...

f i

I Instance of the general case

I true can be selected
anytime, regardless of other
guards

I Special case

I else selected only if all
other guards are false

FMSD: Promela /GU 170901 11 / 37

Guarded Commands: Selection Cont’d

bool p;

...

i f
:: p -> ...

:: true -> ...

f i

bool p;

...

i f
:: p -> ...

:: e l se -> ...

f i

I Instance of the general case

I true can be selected
anytime, regardless of other
guards

I Special case

I else selected only if all
other guards are false

FMSD: Promela /GU 170901 11 / 37

Guarded Statement Syntax

:: guard -> command

Observations

I -> is synonym for ;

I Therefore: can use ; instead of ->
(Relation guards vs. statements will get clearer later)

I First statement after :: used as guard

I -> command can be omitted

I (-> overloaded, see conditional expressions)

FMSD: Promela /GU 170901 12 / 37

Guarded Statement Syntax

:: guard -> command

Observations

I -> is synonym for ;

I Therefore: can use ; instead of ->
(Relation guards vs. statements will get clearer later)

I First statement after :: used as guard

I -> command can be omitted

I (-> overloaded, see conditional expressions)

FMSD: Promela /GU 170901 12 / 37

Guarded Commands: Repetition

active proctype P() { /* computes gcd */

int a = 15, b = 20;

do
:: a > b -> a = a - b

:: b > a -> b = b - a

:: a == b -> break
od

}

FMSD: Promela /GU 170901 13 / 37

Guarded Commands: Repetition

active proctype P() { /* computes gcd */

int a = 15, b = 20;

do
:: a > b -> a = a - b

:: b > a -> b = b - a

:: a == b -> break
od

}

Command Line Execution

Trace with values of local variables

> spin -p -l gcd.pml

> spin --help

FMSD: Promela /GU 170901 13 / 37

Guarded Commands: Repetition

active proctype P() { /* computes gcd */

int a = 15, b = 20;

do
:: a > b -> a = a - b

:: b > a -> b = b - a

:: a == b -> break
od

}

Observations

I Any alternative whose guard is true is randomly selected

I Only way to exit loop is via break or goto

I When no guard true: loop blocks until one becomes true

FMSD: Promela /GU 170901 13 / 37

Counting Loops

Counting loops can be realized with break after termination condition

#define N 10 /* C-style preprocessing */

active proctype P() {

int sum = 0; byte i = 1;

...

do
:: i > N -> break /* test */

:: e l se -> sum = sum + i; i++ /* body ,increase */

od
...

}

Observations

I Don’t forget else, otherwise strange behaviour

FMSD: Promela /GU 170901 14 / 37

Counting Loops

Counting loops can be realized with break after termination condition

#define N 10 /* C-style preprocessing */

active proctype P() {

int sum = 0; byte i = 1;

...

do
:: i > N -> break /* test */

:: e l se -> sum = sum + i; i++ /* body ,increase */

od
...

}

Observations

I Don’t forget else, otherwise strange behaviour

FMSD: Promela /GU 170901 14 / 37

For-loops

Since Spin 6, support for native for-loops.

byte i;

for (i : 1..10) {

/* loop body */

}

Internally translated to:

byte i;

i = 1;

do
:: i <= 10 ->

/* loop body */

i++

:: e l se -> break
od

}

Awareness of translation helps when analyzing runs and interleavings.

FMSD: Promela /GU 170901 15 / 37

For-loops

Since Spin 6, support for native for-loops.

byte i;

for (i : 1..10) {

/* loop body */

}

Internally translated to:

byte i;

i = 1;

do
:: i <= 10 ->

/* loop body */

i++

:: e l se -> break
od

}

Awareness of translation helps when analyzing runs and interleavings.

FMSD: Promela /GU 170901 15 / 37

Arrays

active proctype P() {

byte a[5]; /* declare + initialize byte array a */

a[0]=0; a[1]=10; a[2]=20; a[3]=30; a[4]=40;

byte sum = 0, i = 0;

do
:: i > N-1 -> break
:: e l se -> sum = sum + a[i]; i++

od
}

Observations

I Arrays are scalar types: a and b always different arrays

I Array bounds are constant and cannot be changed

I Only one-dimensional arrays (there is an ugly workaround)

FMSD: Promela /GU 170901 16 / 37

Arrays

active proctype P() {

byte a[5]; /* declare + initialize byte array a */

a[0]=0; a[1]=10; a[2]=20; a[3]=30; a[4]=40;

byte sum = 0, i = 0;

do
:: i > N-1 -> break
:: e l se -> sum = sum + a[i]; i++

od
}

Observations

I Arrays are scalar types: a and b always different arrays

I Array bounds are constant and cannot be changed

I Only one-dimensional arrays (there is an ugly workaround)

FMSD: Promela /GU 170901 16 / 37

Record Types

typedef DATE {

byte day , month , year;

}

active proctype P() {

DATE D;

D.day = 23; D.month = 5; D.year = 67

}

Observations

I may include previously declared record types, but no self-references

I Can be used to realize multi-dimensional arrays:

typedef VECTOR {

int vector [10]

}

VECTOR matrix [5]; /* base type array in record */

matrix [3]. vector [6] = 17;

FMSD: Promela /GU 170901 17 / 37

Record Types

typedef DATE {

byte day , month , year;

}

active proctype P() {

DATE D;

D.day = 23; D.month = 5; D.year = 67

}

Observations

I may include previously declared record types, but no self-references

I Can be used to realize multi-dimensional arrays:

typedef VECTOR {

int vector [10]

}

VECTOR matrix [5]; /* base type array in record */

matrix [3]. vector [6] = 17;

FMSD: Promela /GU 170901 17 / 37

Record Types

typedef DATE {

byte day , month , year;

}

active proctype P() {

DATE D;

D.day = 23; D.month = 5; D.year = 67

}

Observations

I may include previously declared record types, but no self-references

I Can be used to realize multi-dimensional arrays:

typedef VECTOR {

int vector [10]

}

VECTOR matrix [5]; /* base type array in record */

matrix [3]. vector [6] = 17;

FMSD: Promela /GU 170901 17 / 37

Jumps

#define N 10

active proctype P() {

int sum = 0; byte i = 1;

do
:: i > N -> goto exitloop

:: e l se -> sum = sum + i; i++

od;
exitloop:

print f ("End of loop")
}

Observations

I Jumps allowed only within a process

I Labels must be unique for a process

I Can’t place labels in front of guards (inside alternative ok)

I Easy to write messy code with goto

FMSD: Promela /GU 170901 18 / 37

Jumps

#define N 10

active proctype P() {

int sum = 0; byte i = 1;

do
:: i > N -> goto exitloop

:: e l se -> sum = sum + i; i++

od;
exitloop:

print f ("End of loop")
}

Observations

I Jumps allowed only within a process

I Labels must be unique for a process

I Can’t place labels in front of guards (inside alternative ok)

I Easy to write messy code with goto

FMSD: Promela /GU 170901 18 / 37

Inlining Code

Promela has no method or procedure calls

typedef DATE {

byte day , month , year;

}

i n l ine setDate(D, DD , MM , YY) {

D.day = DD; D.month = MM; D.year = YY

}

active proctype P() {

DATE d;

setDate(d,1,7,62)

}

I macro-like abbreviation mechanism for code that occurs multiply

I inline creates new scope for locally declared variablesa

I but initializers moved outside the inline ⇒ use with care

asince Spin 6, see [Ben-Ari, Supplementary Material on Spin 6]

FMSD: Promela /GU 170901 19 / 37

Inlining Code

Promela has no method or procedure calls

typedef DATE {

byte day , month , year;

}

i n l ine setDate(D, DD , MM , YY) {

D.day = DD; D.month = MM; D.year = YY

}

active proctype P() {

DATE d;

setDate(d,1,7,62)

}

I macro-like abbreviation mechanism for code that occurs multiply

I inline creates new scope for locally declared variablesa

I but initializers moved outside the inline ⇒ use with care

asince Spin 6, see [Ben-Ari, Supplementary Material on Spin 6]

FMSD: Promela /GU 170901 19 / 37

Inlining Code

Promela has no method or procedure calls

typedef DATE {

byte day , month , year;

}

i n l ine setDate(D, DD , MM , YY) {

D.day = DD; D.month = MM; D.year = YY

}

active proctype P() {

DATE d;

setDate(d,1,7,62)

}

I macro-like abbreviation mechanism for code that occurs multiply

I inline creates new scope for locally declared variablesa

I but initializers moved outside the inline ⇒ use with care

asince Spin 6, see [Ben-Ari, Supplementary Material on Spin 6]

FMSD: Promela /GU 170901 19 / 37

Non-Deterministic Programs

Deterministic Promela programs are trivial

Assume Promela program with one process and no overlapping guards

I All variables are (implicitly or explictly) initialized

I No user input possible

I Each state is either blocking or has exactly one successor state

Such a program has exactly one possible computation!

Non-trivial Promela programs are non-deterministic!

Possible sources of non-determinism

1. Non-deterministic choice of alternatives with overlapping guards

2. Scheduling of concurrent processes

FMSD: Promela /GU 170901 20 / 37

Non-Deterministic Programs

Deterministic Promela programs are trivial

Assume Promela program with one process and no overlapping guards

I All variables are (implicitly or explictly) initialized

I No user input possible

I Each state is either blocking or has exactly one successor state

Such a program has exactly one possible computation!

Non-trivial Promela programs are non-deterministic!

Possible sources of non-determinism

1. Non-deterministic choice of alternatives with overlapping guards

2. Scheduling of concurrent processes

FMSD: Promela /GU 170901 20 / 37

Non-Deterministic Generation of Values

byte x;

i f
:: x = 1

:: x = 2

:: x = 3

:: x = 4

f i

Observations

I assignment statement used as guard
I assignment statements (here used as guards) always succeed
I side effect of guard is desired effect of this alternative

I selects non-deterministically a value in {1, 2, 3, 4} for x

FMSD: Promela /GU 170901 21 / 37

Non-Deterministic Generation of Values Cont’d

Generation of values from explicit list impractical for large range

#define LOW 0

#define HIGH 9

byte x = LOW;

do
:: x < HIGH -> x++

:: break
od

Observations

I In each iteration, equal chance for increase of range and loop exit

I Chance of generating n in random simulation is 2−(n+1)

I Obtain no representative test cases from random simulation!
I OK for verification, because all computations are generated

FMSD: Promela /GU 170901 22 / 37

Non-Deterministic Generation of Values Cont’d

Generation of values from explicit list impractical for large range

#define LOW 0

#define HIGH 9

byte x = LOW;

do
:: x < HIGH -> x++

:: break
od

Observations

I In each iteration, equal chance for increase of range and loop exit

I Chance of generating n in random simulation is 2−(n+1)

I Obtain no representative test cases from random simulation!
I OK for verification, because all computations are generated

FMSD: Promela /GU 170901 22 / 37

Select construct

Since Spin 6, support for native select operator.

select(row : 1..8)

Internally translated to:

row = 1;

do
:: row < 8 -> row++

:: break
od

Awareness of translation helps when analyzing runs and interleavings.

FMSD: Promela /GU 170901 23 / 37

Select construct

Since Spin 6, support for native select operator.

select(row : 1..8)

Internally translated to:

row = 1;

do
:: row < 8 -> row++

:: break
od

Awareness of translation helps when analyzing runs and interleavings.

FMSD: Promela /GU 170901 23 / 37

Sources of Non-Determinism

1. Non-deterministic choice of alternatives with overlapping guards

2. Scheduling of concurrent processes

FMSD: Promela /GU 170901 24 / 37

Concurrent Processes

active proctype P() {

print f ("Process P, statement 1\n");
print f ("Process P, statement 2\n")

}

active proctype Q() {

print f ("Process Q, statement 1\n");
print f ("Process Q, statement 2\n")

}

Observations

I Can declare more than one process (need unique identifier)

I At most 255 processes

FMSD: Promela /GU 170901 25 / 37

Execution of Concurrent Processes

Command Line Execution

Random simulation of two processes

> spin interleave.pml

Observations

I Scheduling of concurrent processes ‘on one processor’

I Scheduler randomly selects process to make next step

I Many different computations are possible: non-determinism

I Use -p/-g/-l options to see more execution details

FMSD: Promela /GU 170901 26 / 37

Execution of Concurrent Processes

Command Line Execution

Random simulation of two processes

> spin interleave.pml

Observations

I Scheduling of concurrent processes ‘on one processor’

I Scheduler randomly selects process to make next step

I Many different computations are possible: non-determinism

I Use -p/-g/-l options to see more execution details

FMSD: Promela /GU 170901 26 / 37

Sets of Processes

active [2] proctype P() {

print f ("Process %d, statement 1\n", _pid);

print f ("Process %d, statement 2\n", _pid)

}

Observations

I Can declare set of identical processes

I Current process identified with reserved variable _pid

I Each process can have its own local variables

Command Line Execution

Random simulation of set of two processes

> spin interleave_set.pml

FMSD: Promela /GU 170901 27 / 37

Sets of Processes

active [2] proctype P() {

print f ("Process %d, statement 1\n", _pid);

print f ("Process %d, statement 2\n", _pid)

}

Observations

I Can declare set of identical processes

I Current process identified with reserved variable _pid

I Each process can have its own local variables

Command Line Execution

Random simulation of set of two processes

> spin interleave_set.pml

FMSD: Promela /GU 170901 27 / 37

Promela Computations

1 active [2] proctype P() {

2 byte n;

3 n = 1;

4 n = 2

5 }

One possible computation (‘run’) of this program

2, 2

0, 0

3, 2

1, 0

3, 3

1, 1

3, 4

1, 2

4, 4

2, 2

Notation

I Program pointer for each process in upper compartment

I Value of local n for each process in lower compartment

Computations are either infinite or terminating or blocking

FMSD: Promela /GU 170901 28 / 37

Promela Computations

1 active [2] proctype P() {

2 byte n;

3 n = 1;

4 n = 2

5 }

One possible computation (‘run’) of this program

2, 2

0, 0

3, 2

1, 0

3, 3

1, 1

3, 4

1, 2

4, 4

2, 2

Notation

I Program pointer for each process in upper compartment

I Value of local n for each process in lower compartment

Computations are either infinite or terminating or blocking

FMSD: Promela /GU 170901 28 / 37

Promela Computations

1 active [2] proctype P() {

2 byte n;

3 n = 1;

4 n = 2

5 }

One possible computation (‘run’) of this program

2, 2

0, 0

3, 2

1, 0

3, 3

1, 1

3, 4

1, 2

4, 4

2, 2

Notation

I Program pointer for each process in upper compartment

I Value of local n for each process in lower compartment

Computations are either infinite or terminating or blocking

FMSD: Promela /GU 170901 28 / 37

Interleaving

Can represent possible interleavings in a DAG

1 active [2] proctype P() {

2 byte n;

3 n = 1;

4 n = 2

5 }

2, 2

0, 0

3, 2

1, 0

2, 3

0, 1

3, 3

1, 1

4, 2

2, 0

2, 4

0, 2

3, 4

1, 2

4, 3

2, 1
4, 4

2, 2

FMSD: Promela /GU 170901 29 / 37

Atomicity

At which granularity of execution can interleaving occur?

Definition (Atomicity)

An expression or statement of a process that is executed entirely without
the possibility of interleaving is called atomic.

Atomicity in Promela

I Assignments, jumps, skip, and expressions are atomic
I In particular, conditional expressions are atomic:

(p -> q : r), C-style syntax, brackets required

I Guarded commands?

FMSD: Promela /GU 170901 30 / 37

Atomicity

At which granularity of execution can interleaving occur?

Definition (Atomicity)

An expression or statement of a process that is executed entirely without
the possibility of interleaving is called atomic.

Atomicity in Promela

I Assignments, jumps, skip, and expressions are atomic
I In particular, conditional expressions are atomic:

(p -> q : r), C-style syntax, brackets required

I Guarded commands?

FMSD: Promela /GU 170901 30 / 37

Atomicity Cont’d

int a,b,c;

active proctype P() {

a = 1; b = 1; c = 1;

i f
:: a != 0 -> c = b / a

:: e l se -> c = b

f i
}

active proctype Q() { a = 0 }

Variables declared outside proctype are global.

Command Line Execution

Particular interleaving enforced by interactive simulation

> spin -p -g -i zero.pml

FMSD: Promela /GU 170901 31 / 37

Atomicity Cont’d

int a,b,c;

active proctype P() {

a = 1; b = 1; c = 1;

i f
:: a != 0 -> c = b / a

:: e l se -> c = b

f i
}

active proctype Q() { a = 0 }

Variables declared outside proctype are global.

Command Line Execution

Particular interleaving enforced by interactive simulation

> spin -p -g -i zero.pml

FMSD: Promela /GU 170901 31 / 37

Atomicity Cont’d

int a,b,c;

active proctype P() {

a = 1; b = 1; c = 1;

i f
:: a != 0 -> c = b / a

:: e l se -> c = b

f i
}

active proctype Q() { a = 0 }

Variables declared outside proctype are global.

Command Line Execution

Particular interleaving enforced by interactive simulation

> spin -p -g -i zero.pml

FMSD: Promela /GU 170901 31 / 37

Atomicity Cont’d

Atomicity in Promela

I Alternatives in guarded commands are not atomic

How to prevent interleaving?

1. Consider to use expression instead of selection statement:

c = (a != 0 -> (b / a): b)

2. Put code inside atomic (but potentally unfaithful model):

atomic {

i f
:: a != 0 -> c = b / a

:: e l se -> c = b

f i
}

Remark: Blocking statement in atomic may lead to interleaving
(Lect. “Concurrency”)

FMSD: Promela /GU 170901 32 / 37

Atomicity Cont’d

Atomicity in Promela

I Alternatives in guarded commands are not atomic

How to prevent interleaving?

1. Consider to use expression instead of selection statement:

c = (a != 0 -> (b / a): b)

2. Put code inside atomic (but potentally unfaithful model):

atomic {

i f
:: a != 0 -> c = b / a

:: e l se -> c = b

f i
}

Remark: Blocking statement in atomic may lead to interleaving
(Lect. “Concurrency”)

FMSD: Promela /GU 170901 32 / 37

Atomicity Cont’d

Atomicity in Promela

I Alternatives in guarded commands are not atomic

How to prevent interleaving?

1. Consider to use expression instead of selection statement:

c = (a != 0 -> (b / a): b)

2. Put code inside atomic (but potentally unfaithful model):

atomic {

i f
:: a != 0 -> c = b / a

:: e l se -> c = b

f i
}

Remark: Blocking statement in atomic may lead to interleaving
(Lect. “Concurrency”)

FMSD: Promela /GU 170901 32 / 37

Usage Scenario of Promela

1. Model the essential features of a system in Promela
I abstract away, or simplify, complex (numeric) computations

I make use of non-deterministic choice

I replace unbound data structures with fixed size date structures
I replace large variety by small variety

2. Select properties that the Promela model must satisfy
I Generic Properties (discussed in later lectures)

I Mutual exclusion for access to critical resources
I Absence of deadlock
I Absence of starvation

I Specific Properties

FMSD: Promela /GU 170901 33 / 37

Formalisation with Promela

System

Requirements

Formal
Execution

Model

Formal
Requirements
Specification

System

Design

Promela

Model

Specific

Properties

FMSD: Promela /GU 170901 34 / 37

Formalisation with Promela

System

Requirements

Promela
Model

Formal
Properties

System

Design

Promela

Model

Specific

Properties

FMSD: Promela /GU 170901 34 / 37

Formalisation with Promela

System

Requirements

System

Design

Promela

Model

Specific

Properties

FMSD: Promela /GU 170901 34 / 37

Formalisation with Promela Abstraction

System

Requirements

System

Design

Promela

Model

Specific

Properties

FMSD: Promela /GU 170901 34 / 37

Formalisation with Promela Abstraction

System

Requirements

System

Design

Promela

Model

direct modeling
(SEFM course)

Specific

Properties

FMSD: Promela /GU 170901 34 / 37

Formalisation with Promela

System

Requirements

System

Design

Promela

Model

direct modeling
(SEFM course)

Generic
Properties

Specific

Properties

FMSD: Promela /GU 170901 34 / 37

Formalisation with Promela

System

Requirements

System

Design

Promela

Model

direct modeling
(SEFM course)

Generic
Properties

Specific

Properties

FMSD: Promela /GU 170901 34 / 37

Usage Scenario of Promela Cont’d

1. Model the essential features of a system in Promela
I abstract away from complex (numerical) computations

I make use of non-deterministic choice

I replace unbound data structures with fixed size date structures
I replace large variety by small variety

2. Select properties that the Promela model must satisfy
I Mutal exclusion for access to critical resources
I Absence of deadlock
I Absence of starvation
I Event sequences (e.g., system responsiveness)

3. Verify that all possible runs of Promela model satisfy properties
I Typically, need many iterations to get model and properties right
I Failed verification attempts provide feedback via counter examples

FMSD: Promela /GU 170901 35 / 37

Verification: Work Flow (Simplified)

Promela Program

byte n = 0;

active proctype P() {

n = 1

}

active proctype Q() {

n = 2

}

Properties

[](!csp || !csq)

Spin

48

csp= 0 1 1
csq= 1 0 1

FMSD: Promela /GU 170901 36 / 37

Literature for this Lecture

Ben-Ari Chapter 1, Sections 3.1–3.3, 3.5, 4.6, Chapter 6

Ben-Ari-sup Supplementary Material on Spin Version 6

Spin Reference card

jspin User manual, file doc/jspin-user.pdf in distribution

FMSD: Promela /GU 170901 37 / 37

	Promela
	Hello World
	Simple Data Types
	Control Statements
	Complex Data Types
	Inlining
	Non-Determinism
	Concurrent Processes
	Computations
	Atomicity
	Usage Scenario of Promela
	Literature

