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The Big Picture: Syntax, Semantics, Calculus
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Simplest Case: Propositional Logic
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Syntax of Propositional Logic

Signature

A set of Propositional Variables AP
(‘atomic propositions’, with typical elements p, g, r,...)

Propositional Connectives
true, false, A, V, =, —, <

Set of Propositional Formulas For,
» Truth constants true, false and variables AP are formulas
> If ¢ and v are formulas then
¢, PNy, OVY, =Y, Y
are also formulas

» There are no other formulas (inductive definition)
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Remark on Concrete Syntax

Text book SPIN

Negation - !
Conjunction A &&
Disjunction v I
Implication —, D -
Equivalence ~ <>
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Remark on Concrete Syntax

Text book SPIN

Negation - !
Conjunction A &&
Disjunction v I
Implication —, D -
Equivalence ~ <>

We use mostly the textbook notation,
except for tool-specific slides, input files.
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Semantics of Propositional Logic

Interpretation 7
Assigns a truth value to each propositional variable

T:AP—{T,F}
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Semantics of Propositional Logic

Interpretation 7

Assigns a truth value to each propositional variable

T:AP—{T,F}

Example
Let AP = {p.,q}
p— (qg = p)
P q
Iy F F
T F

1>
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Semantics of Propositional Logic

Interpretation 7

Assigns a truth value to each propositional variable

T:AP—{T,F}

Example
Let AP = {p.,q}
p— (qg = p)

P q
., F F
T F

1

How to evaluate p — (g — p) in each interpretation Z;?
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Semantics of Propositional Logic

Interpretation 7

Assigns a truth value to each propositional variable

T:AP—{T,F}

Valuation Function
valz: Continuation of Z on Fory

valr : Forp — {T,F}

valz(true) = T
valz(false) = F
valz(pi) = Z(pi)

(cont'd next page)
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Semantics of Propositional Logic (Cont’d)

Valuation function (Cont’d)

_ T if Va/1(¢) =F
valz(=¢) = { F otherwise
_ [ T ifval(¢) = T and valr(yp) = T
valz(¢p A ) = { F  otherwise
_J T ifvai(¢) =T or valr(y) = T
valz(¢ V ¢) = { F otherwise

[ T ifvalg(¢) = F or valz(¢p) =T
valz(¢ = ¥) = { F  otherwise

T if valr(¢) = valz()
valz(¢ < ¢) = { F  otherwise
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Valuation Examples

Example
Let AP = {p,q}
p— (g = p)
P q
., F F
I, T F

How to evaluate p — (g — p) in Zp7?
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Example
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P q
I, F F
., T F

How to evaluate p — (g — p) in Zp7?

val,(p = (9 = p)) =
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Valuation Examples

Example
Let AP = {p,q}
p— (g = p)
P q
., F F
I, T F

How to evaluate p — (g — p) in Zp7?

val,(p — (¢ — p)) = Tiff val,(p) =Forval,(gq — p)=T
val,(p) = Io(p) = T
valr,(q — p) = Tiff val,(q) = F or valg,(p) =T
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Valuation Examples

Example
Let AP = {p,q}
p— (g = p)
P q
., F F
I, T F

How to evaluate p — (g — p) in Zp7?

val,(p — (¢ — p)) = Tiff val,(p) =Forval,(gq — p)=T
val,(p) = Io(p) = T

valr,(q — p) = Tiff val,(q) = F or valg,(p) =T

valp,(q) = I2(q) = F
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Semantic Notions of Propositional Logic

Let ¢ € Foryg, I C Fory

Definition (Satisfying Interpretation, Consequence Relation)
T satisfies ¢ (write: Z |= ¢) iff valz(¢p) = T

¢ follows from I (write: T |= ¢) iff for all interpretations Z:

If Z = forall ¢ €T, then also Z = ¢
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Semantic Notions of Propositional Logic

Let ¢ € Foryg, I C Fory

Definition (Satisfying Interpretation, Consequence Relation)
T satisfies ¢ (write: Z |= ¢) iff valz(¢p) = T

¢ follows from I (write: T |= ¢) iff for all interpretations Z:

If Z = forall ¢ €T, then also Z = ¢

Definition (Satisfiability, Validity)

A formula is satisfiable if it is satisfied by some interpretation.

If every interpretation satisfies ¢ (write: = ¢) then ¢ is called valid.
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Semantics of Propositional Logic: Examples

Formula (same as before)

p— (@9 = p)
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Semantics of Propositional Logic: Examples

Formula (same as before)

p— (@9 = p)

Is this formula valid?

Fp—=(@—p7
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Semantics of Propositional Logic: Examples

p A ((=p) V q) |

Satisfiable?
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Semantics of Propositional Logic: Examples

p A ((=p) V q) |

Satisfiable?
Satisfying Interpretation?
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Semantics of Propositional Logic: Examples

p A ((=p) V q) ]

Satisfiable?
Satisfying Interpretation? I(p)=T,Z(q)=T
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Semantics of Propositional Logic: Examples

p A ((=p) V q) |

Satisfiable?
Satisfying Interpretation? I(p)=T,Z(q)=T
Other Satisfying Interpretations?
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Semantics of Propositional Logic: Examples

p A ((=p) V q) |

Satisfiable?
Satisfying Interpretation? I(p)=T,Z(q)=T
Other Satisfying Interpretations? X
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Semantics of Propositional Logic: Examples

p A ((=p) V q) ]

Satisfiable?

Satisfying Interpretation? I(p)=T,Z(q)=T
Other Satisfying Interpretations? X

Therefore, not valid!
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Semantics of Propositional Logic: Examples

p A ((=p) V q)

Satisfiable?

Satisfying Interpretation? I(p)=T,Z(q)=T
Other Satisfying Interpretations? X

Therefore, not valid!

pA((=P) V@ EqVr

Does it hold?
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Semantics of Propositional Logic: Examples

p A ((=p) V q)

Satisfiable?

Satisfying Interpretation? I(p)=T,Z(q)=T
Other Satisfying Interpretations? X

Therefore, not valid!

pA((=P) V@ EqVr

Does it hold? Yes. Why?
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An Exercise in Formalisation

1 byte n;

2 active proctype [2] P() {
3 n = 0;

4 n =n+ 1

5%

Can we characterise the states of P propositionally?
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An Exercise in Formalisation

1 byte n;

2 active proctype [2] P() {
3 n = 0;

4 n =mn+ 1

5}

Can we characterise the states of P propositionally?
Find a propositional formula ¢p which is true if and only if it describes a
possible state of P.
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An Exercise in Formalisation

1 byte n;

2 active proctype [2] P() {
3 n = 0;

4 n =n+ 1

5%}

AP : Ng, Ny, No, ..., N7 8-bit representation of byte
PCQ03, PCQq4, PCQOs, PC13, PC14, PCls next instruction pointer

Which interpretations do we need to “exclude”?

- |
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AP : Ng, Ny, No, ..., N7 8-bit representation of byte
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An Exercise in Formalisation

1 byte n;

2 active proctype [2] P() {
3 n = 0;

4 n =n+ 1

5%}

AP : Ng, Ny, No, ..., N7 8-bit representation of byte
PCQ03, PCQq4, PCQOs, PC13, PC14, PCls next instruction pointer
Which interpretations do we need to “exclude”?
» The variable n is represented by eight bits, all values possible

» A process cannot be at two positions at the same time

bp = < ((PC03/\—|PC04/\—\PCO5)\/...)/\ )
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An Exercise in Formalisation

1 byte n;

2 active proctype [2] P() {
3 n = 0;

4 n =n+ 1

5}
AP : Ng, Ny, No, ..., N7 8-bit representation of byte
PCQ03, PCQq4, PCQOs, PC13, PC14, PCls next instruction pointer
Which interpretations do we need to “exclude”?
» The variable n is represented by eight bits, all values possible
» A process cannot be at two positions at the same time

> If neither process 0 nor process 1 are at position 5, then n is zero

op i ((PCO3 A=2PCOG A =PCO5) V.. )A
P ((-PCOs A =PCLs) = (=Ng A-.. A =)
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An Exercise in Formalisation

1 byte n;

2 active proctype [2] P() {
3 n = 0;

4 n =n+ 1

5%}

AP : Ng, Ny, No, ..., N7 8-bit representation of byte
PCQ03, PCQq4, PCQOs, PC13, PC14, PCls next instruction pointer
Which interpretations do we need to “exclude”?
» The variable n is represented by eight bits, all values possible

» A process cannot be at two positions at the same time

> If neither process 0 nor process 1 are at position 5, then n is zero
> ..

bp = ((PC03/\_‘PC04/\_\PCO5)\/...)/\
P\ ((#PCOs A PCls) = (~No A... A=N))A ...
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Is Propositional Logic Enough?

Can design for a program P a formula ®p describing all reachable states

For a given property W the consequence relation

O, =W

holds when W is true in any possible state reachable in any run of P
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Is Propositional Logic Enough?

Can design for a program P a formula ®p describing all reachable states

For a given property W the consequence relation

O, =W

holds when W is true in any possible state reachable in any run of P

But How to Express Properties Involving State Changes?
In any run of a program P

> n will become greater than 0 eventually?

» n changes its value infinitely often

etc.
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Is Propositional Logic Enough?

Can design for a program P a formula ®p describing all reachable states

For a given property W the consequence relation

O, =W

holds when W is true in any possible state reachable in any run of P

But How to Express Properties Involving State Changes?
In any run of a program P

> n will become greater than 0 eventually?

» n changes its value infinitely often

etc.

= Need a more expressive logic: (Linear) Temporal Logic J
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Transition Systems (aka Kripke Structures)

: S M
- W N

We assume AP = {p, q}

Notation

m transition .
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Transition Systems (aka Kripke Structures)

W Y
i W Nz

» Each state has its own interpretation Z : {p,q} — {T,F}

» Convention: list interpretation of variables in lexicographic order
» Computations, or runs, are infinite paths through states

> ‘finite’ runs simulated by looping on terminal state

> Prefix of some example runs:

> s S/s/IS/S//S/S//SII/

> 5 S/s/IS///S//sIS//s/
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Formal Verification: Model Checking

TL
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Transition System of some PROMELA Model

°x

A~
s s/l/
G W )

Notation

@ statement\
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Transition Systems: Formal Definition

Definition (Transition System)

A transition system T = (S, —, S,, L) is composed of a set of states S,
a transition relation - C S x S, a set ) # Sy C S of initial states, and

a labeling L of each state s € S with a propositional interpretation L(s).
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Transition Systems: Formal Definition

Definition (Transition System)

A transition system T = (S, —, S,, L) is composed of a set of states S,
a transition relation - C S x S, a set ) # Sy C S of initial states, and
a labeling L of each state s € S with a propositional interpretation L(s).

Definition (Run of Transition System)

A run of T = (5,—,5,, L) is a sequence of states
O=5S5...

such that sy € Sp and s; — sj41 for all i > 0.
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Transition Systems: Formal Definition

Definition (Transition System)

A transition system T = (S, —, S,, L) is composed of a set of states S,
a transition relation - C S x S, a set (} £ Sy C S of initial states, and
a labeling L of each state s € S with a propositional interpretation L(s).

Definition (Run of Transition System)

A run of T = (5,—,5,, L) is a sequence of states
O=5S5...

such that sy € Sp and s; — sj41 for all i > 0.

Definition (Trace)

The trace tr(o) of a run 0 = sps1 ... is the sequence
T=To1;1...

such that Z; = L(s;).

A trace of T is tr(o) for any run o of T.
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Runs and Traces Visually

» Givenarun 0 = 595155354 ...

OAROSROSRO SO S

» Each state s of a transition system is labelled, via L(s), with an
interpretation

» If we name each interpretations L(s;) as Z;, we have

» The trace tr(o) is: T=Z0T1 1o 13 ..

FMSD: Linear Temporal Logic CHALMERS/GU 170912 20 /52



Notations: Power Set and Sequences

Assume sets X and Y.

Power Set

2% is the set of all subsets of X (called ‘power set of X').

Finite Sequences

Y* is the set of all finite sequences (words) of elements of Y.

Infinite Sequences

Y« is the set of all infinite sequences (words) of elements of Y.
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Power Sets and Sequences: Example

Given the set of atomic propositions AP = {p, q}.

Power Set

2P = { {3, {p}. {p},{p.q}}

Finite Sequences
(2A47)*: set of all finite sequences of elements of 24F.

Eg. {p}{}p.qH{p} € (22F)"

(and infitely many others)

Infinite Sequences

(24P)«: set of all infinite sequences of elements of 24P

Eg: {p}Hp aH{p}{HpHp, a}{p}}. .. € @**)

(and uncountably many others)
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Interpretations as Sets

Interpretations over atomic propositions AP can be represented as
elements of 2AF.
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Interpretations as Sets
Interpretations over atomic propositions AP can be represented as
elements of 2AF.

E.g., assume AP = {p, q}
le., 247 = {{}, {p}, {p}. {p. q} }
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Interpretations as Sets

Interpretations over atomic propositions AP can be represented as
elements of 2AF.

Eg assume AP = {p, q}
222 = {0 P} P} P, a} }

7 ﬁ ,C_l represented as  {}
P q
o, T F represented as  {p}
p q
o F T represented as  {q}
7 g_ ;7_ represented as  {p, q}
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Runs and Traces revisited

Given states S and atomic propositions AP.

» Arun o = 59515 S354... 1S an element of S¥.
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Runs and Traces revisited

Given states S and atomic propositions AP.

» Arun o = 59515 S354... 1S an element of S¥.
» Atrace 7 =T9Z1 I T3. .. is an element of of (247)~,
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Runs and Traces revisited

Given states S and atomic propositions AP.

» Arun o = 59515 S354... 1S an element of S¥.
» Atrace 7 =T9Z1 I T3. .. is an element of of (247)~,

An example of a trace 7 = ZoZ1 Zo 73 . . . may look like:

7= {pHp,a}{pH} ..
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Linear Time Properties

Definition (Linear Time Property)

Given a set of atomic propositions AP.
Each subset P of (24FP)“ is a linear time (LT) property over AP.
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Linear Time Properties

Definition (Linear Time Property)

Given a set of atomic propositions AP.
Each subset P of (24FP)“ is a linear time (LT) property over AP.

Intuition:
» Assume a trace property P C (24F)«.
> A trace t fulfils the property P iff t € P.

> A trace t violates the property P iff t & P.
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Classes of LT Properties

The LT properties can be devided in three classes:
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Classes of LT Properties

The LT properties can be devided in three classes:

» Safety properties

» Liveness properties
» Properties that are neither safety nor liveness properties

170912 26 /52
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Safety Properties

Definition (Safety Properties, Bad Prefixes)

An LT property Psar over AP is called a safety property if for all words
7 € (24P)% \ Pgute, there exists a finite prefix 7 of 7 such that

FMSD: Linear Temporal Logic CHALMERS/GU 170912 27 /52



Safety Properties

Definition (Safety Properties, Bad Prefixes)

An LT property Psar over AP is called a safety property if for all words
7 € (24P)% \ Pgute, there exists a finite prefix 7 of 7 such that

Psare N {T' S (2AP)°J | 7 is a finite prefix of 7"} =0
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Safety Properties

Definition (Safety Properties, Bad Prefixes)

An LT property Psar over AP is called a safety property if for all words
7 € (24P)% \ Pgute, there exists a finite prefix 7 of 7 such that

Psare N {T' S (2AP)°J | 7 is a finite prefix of 7"} =0

Each violating trace 7 has a finite, ‘bad prefix’ 7.
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Liveness Properties

Let pref(P) be the set of finite prefixes of elements of P.
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Liveness Properties

Let pref(P) be the set of finite prefixes of elements of P.

Definition (Liveness Properties)
An LT property Pjive over AP is called a liveness property whenever
pref (Pjive) = (24F)*
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Liveness Properties

Let pref(P) be the set of finite prefixes of elements of P.

Definition (Liveness Properties)

An LT property Pjive over AP is called a liveness property whenever
pref(P,,-ve) = (2AP)*

A liveness property allows every finite prefix.
(It cannot be refuted in finite time.)
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Linear Temporal Logic

An extension of propositional logic that
allows to specify properties of all traces
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Linear Temporal Logic—Syntax

An extension of propositional logic that
allows to specify properties of all traces

Syntax
Based on propositional signature and syntax
Extension with three connectives (in this course):
Always If ¢ is a formula, then so is [l¢
Eventually If ¢ is a formula, then so is Q¢
Until If ¢ and 1 are formulas, then so is ¢ U

Concrete Syntax

text book SPIN

Always O []
Eventually O <>
Until U U
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Linear Temporal Logic Syntax: Examples

Let AP = {p, g} be the set of propositional variables.

> p
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Linear Temporal Logic Syntax: Examples

Let AP = {p, g} be the set of propositional variables.

> p
> false
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Linear Temporal Logic Syntax: Examples

Let AP = {p, g} be the set of propositional variables.

> p
> false

> p—q

FMSD: Linear Temporal Logic CHALMERS/GU 170912 30 /52



Linear Temporal Logic Syntax: Examples

Let AP = {p, g} be the set of propositional variables.
> p
> false
>p—q
> Op
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Linear Temporal Logic Syntax: Examples

Let AP = {p, g} be the set of propositional variables.
> p
> false
>p—q
> Op
» Cg
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Linear Temporal Logic Syntax: Examples

Let AP = {p, g} be the set of propositional variables.
> p
> false
>p—q
> Op
» Cg
> 00(p — q)
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Linear Temporal Logic Syntax: Examples

Let AP = {p, g} be the set of propositional variables.
> p
> false
> p—gq
> Op
» Cg
O0(p — q)
(Op) = ((OP) V —q)

v

v
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Linear Temporal Logic Syntax: Examples

Let AP = {p, g} be the set of propositional variables.
> p
> false
> p—gq
> Op
» Cg
08(p — q)
(Op) = ((OP) V —q)
pU(Hq)

v

v

v
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Temporal Logic—Semantics

Valuation of temporal formula relative to trace (infinite sequence of
interpretations)
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Temporal Logic—Semantics

Valuation of temporal formula relative to trace (infinite sequence of
interpretations)

Definition (Validity Relation)
Validity of temporal formula depends on traces 7 =ZpZ; . ..
TEDP iff Zo(p) =T, for p € AP.
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Temporal Logic—Semantics

Valuation of temporal formula relative to trace (infinite sequence of

interpretations)

Definition (Validity Relation)
Validity of temporal formula depends on traces 7 =ZpZ; . ..

TEDP iff Zo(p) =T, for p € AP.
T E ¢ iff not7T k¢ (write 7 [~ ¢)
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Temporal Logic—Semantics

Valuation of temporal formula relative to trace (infinite sequence of
interpretations)

Definition (Validity Relation)
Validity of temporal formula depends on traces 7 =ZpZ; . ..
TEDP iff Zo(p) =T, for p € AP.

T = ¢ iff not7T k¢ (write 7 [~ ¢)
TEOANY iff TEdand T EY
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Temporal Logic—Semantics

Valuation of temporal formula relative to trace (infinite sequence of

interpretations)

Definition (Validity Relation)

Validity of temporal formula depends on traces 7 =ZpZ; . ..

TEP iff Zo(p) =T, for p € AP.

T E ¢ iff not7T k¢ (write 7 [~ ¢)

TEOANY iff TEdand T EY

TEoVY iff TEdorTEY

TEe—oY iff THEdorTEY
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Temporal Logic—Semantics

Valuation of temporal formula relative to trace (infinite sequence of

interpretations)

Definition (Validity Relation)
Validity of temporal formula depends on traces 7 =ZpZ; . ..

TEDP iff Zo(p) =T, for p € AP.
T E ¢ iff not7T k¢ (write 7 [~ ¢)
TEOANY iff TEdand T EY
TEoVY iff TEdorTEY
TEd—>¢Y iff TESorTEY

Temporal connectives?
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Temporal Logic—Semantics (Cont’d)

Trace 7
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Temporal Logic—Semantics (Cont’d)

Trace 7

If 7 =2ZpZ; ..., then 7|; denotes the suffix Z; Z;11 ... of T.
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Temporal Logic—Semantics (Cont’d)

Trace 7

If 7 =2ZpZ; ..., then 7|; denotes the suffix Z; Z;11 ... of T.

Definition (Validity Relation for Temporal Connectives)

Given atrace t =ZpZ; . ..
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Temporal Logic—Semantics (Cont’d)

Trace 7

If 7 =2ZpZ; ..., then 7|; denotes the suffix Z; Z;11 ... of T.

Definition (Validity Relation for Temporal Connectives)
Given atrace t =ZpZ; . ..
TEOp iff 7|k ¢ forall k>0
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Temporal Logic—Semantics (Cont’d)

Trace 7

¢

If 7 =2ZpZ; ..., then 7|; denotes the suffix Z; Z;11 ... of T.

Definition (Validity Relation for Temporal Connectives)
Given atrace t =ZpZ; . ..

T = O iff 7|k = ¢ forall k>0
TEOd iff 7|k = ¢ for some k >0
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Temporal Logic—Semantics (Cont’d)

Trace 7
¢ o} e ¢ (0

If 7 =2ZpZ; ..., then 7|; denotes the suffix Z; Z;11 ... of T.

Definition (Validity Relation for Temporal Connectives)
Given atrace t =ZpZ; . ..

T = O iff 7|k = ¢ forall k>0
TEOd iff 7|k |= ¢ for some k >0

T = oUY iff 7| =1 for some k >0, and 7|; |= ¢ for all 0<j<k
(if k = 0 then ¢ needs never hold)
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Safety and Liveness Properties

Safety Properties
» Always-formulas called safety properties:
“something bad never happens”
» Example:
O (—P_in_CS V —~Q_in_CS)
‘simultaneous visit to the critical sections never happens’
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Safety and Liveness Properties

Safety Properties
» Always-formulas called safety properties:
“something bad never happens”
» Example:
O (—P_in_CS V —~Q_in_CS)
‘simultaneous visit to the critical sections never happens’

Liveness Properties
» Eventually-formulas called liveness properties:
“something good happens eventually”

» Example:
OP_in_CS
‘P enters its critical section eventually’
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Complex Properties

What does this mean?

T =006
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Complex Properties

Infinitely Often
T E 006

“During trace 7 the formula ¢ becomes true infinitely often”
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Validity of Temporal Logic

Definition (Validity)
¢ is valid, write |= ¢, iff T |= ¢ for all traces 7 =ZpZ; . . .. J
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Validity of Temporal Logic

Definition (Validity)
¢ is valid, write |= ¢, iff 7 |= ¢ for all traces 7 =ZpZ; . . ..

Representation of Traces
Can represent a set of traces as a sequence of propositional formulas:
> ¢o @1, ... represents all traces ZpZ; . .. such that Z; = ¢; for i > 0
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Semantics of Temporal Logic: Examples

E ]

Valid?
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Semantics of Temporal Logic: Examples

E J

Valid?
No, there is a trace where it is not valid:
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Semantics of Temporal Logic: Examples

E

Valid?
No, there is a trace where it is not valid:

(~¢=p—g ...)
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Semantics of Temporal Logic: Examples

O0e J
Valid?
No, there is a trace where it is not valid:
(mp—d—¢ ...)

Valid in some trace?

FMSD: Linear Temporal Logic CHALMERS/GU 170912 36 /52



Semantics of Temporal Logic: Examples

O0e J
Valid?
No, there is a trace where it is not valid:
(mp—d—¢ ...)

Valid in some trace?
Yes, for example: (¢ oo ...)
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Semantics of Temporal Logic: Examples

O0e J
Valid?
No, there is a trace where it is not valid:
(mp—d—¢ ...)

Valid in some trace?
Yes, for example: (¢ oo ...)

06— ¢ (-0) ++ (0-9) 06 & (trucUs) |
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Semantics of Temporal Logic: Examples

E

Valid?

No, there is a trace where it is not valid:

(—¢—=dp—g...)
Valid in some trace?
Yes, for example: (¢ oo ...)

Lo — ¢ (=00) < (0-¢)

Q¢ <> (true Uo) J

All are valid! (proof is exercise)
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170912 36 /52



Semantics of Temporal Logic: Examples

O0¢
Valid?
No, there is a trace where it is not valid:
(mp—d—¢ ...)

Valid in some trace?
Yes, for example: (¢ oo ...)

Lo — ¢ (=00) < (0-¢) 09 > (true Ud)

All are valid! (proof is exercise)

» [ is reflexive
» [0 and ¢ are dual connectives
» [ and { can be expressed with only using U
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Temporal Logic—Semantics (Cont’d)

Extension of validity of temporal formulas to transition systems:

Definition (Validity Relation)
Given a transition system 7 = (S, —, So, L), a temporal formula ¢ is
valid in T (write T = ¢) iff 7 |= ¢ for all traces 7 of T.
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Formal Verification: Model Checking

Translation

TL of Negation
Promela \

Automaton

Transition '

System
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w-Languages

Given a finite alphabet (vocabulary) ¥

A word w € X* is a finite sequence
W=ap...an

with a; € X,i €{0,...,n}

L C ¥* is called a language
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w-Languages

Given a finite alphabet (vocabulary) ¥

An w-word w € X% is an infinite sequence
W=2ap...3..-

with a; € X,i € N

LY C X% is called an w-language
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Buchi Automaton

Definition (Biichi Automaton)

A (non-deterministic) Biichi automaton over an alphabet X consists of a
» finite, non-empty set of locations @
> a transition relation § C Q X ~ x @
> a non-empty set of initial locations Qg C @

> a set of accepting locations F = {f1,...,f,} C Q

Example
Y ={ab},Q@={q1,q,q},/ ={a}, F = {2}

y
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Blichi Automaton—Executions and Accepted Words

Definition (Execution)
Let B =(Q, 6, Qo, F) be a Biichi automaton over alphabet ¥.
An execution of B is a pair (w, v), with
> W=2a,...aK... € 2%
> V=0o...qk... € Q¥
where go € Qo, and (g, aj, gi+1) € 6, for all j € N
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Blichi Automaton—Executions and Accepted Words

Definition (Execution)

Let B =(Q, 6, Qo, F) be a Biichi automaton over alphabet ¥.
An execution of B is a pair (w, v), with

> W=2a,...aK... € 2%
> V=0o...qk... € Q¥
where go € Qo, and (g, aj, gi+1) € 6, for all j € N

Definition (Accepted Word)

A Blichi automaton B accepts a word w € ¥*, if there exists an
execution (w, v) of B where some accepting location f € F appears
infinitely often in v.
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Biichi Automaton—Language

Let B =(Q,6, Qo, F) be a Biichi automaton, then
LY(B) = {w € ¥| B accepts w }

denotes the w-language recognised by 5.
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Biichi Automaton—Language

Let B =(Q,6, Qo, F) be a Biichi automaton, then
LY(B) = {w € ¥| B accepts w }
denotes the w-language recognised by 5.

An w-language for which an accepting Biichi automaton exists
is called w-regular language.
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Example, w-Regular Expression

Which language is accepted by the following Biichi automaton?

a,b

start
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Example, w-Regular Expression

Which language is accepted by the following Biichi automaton?

Solution: (a+ b)*(ab)* [NB: (ab)* = a(ba)“] ]
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Example, w-Regular Expression

Which language is accepted by the following Biichi automaton?

Solution: (a+ b)*(ab)* [NB: (ab)* = a(ba)“] ]

w-regular expressions similar to standard regular expression
ab a followed by b
a+baorb
a* arbitrarily, but finitely often a

new: a“ infinitely often a
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Decidability, Closure Properties
Many properties for regular finite automata hold also for Biichi automata

Theorem (Decidability)

It is decidable whether the accepted language £ (B) of a Biichi
automaton B is empty.
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Decidability, Closure Properties

Many properties for regular finite automata hold also for Biichi automata

Theorem (Decidability)

It is decidable whether the accepted language £ (B) of a Biichi
automaton B is empty.

Theorem (Closure properties)

The set of w-regular languages is closed with respect to intersection,
union and complement:

> if L1, L5 are w-regular then £1 N Ly and £, U Ly are w-regular

» L is w-regular then ¥\ L is w-regular
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Decidability, Closure Properties

Many properties for regular finite automata hold also for Biichi automata

Theorem (Decidability)

It is decidable whether the accepted language £ (B) of a Biichi
automaton B is empty.

Theorem (Closure properties)

The set of w-regular languages is closed with respect to intersection,
union and complement:

> if L1, L5 are w-regular then £1 N Ly and £, U Ly are w-regular

» L is w-regular then ¥\ L is w-regular

But in contrast to regular finite automata:

Non-deterministic Biichi automata are strictly more expressive than
deterministic ones.
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Blichi Automata—More Examples

Language:
a
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Blichi Automata—More Examples

Language: a(a+ ba)*

b
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Blichi Automata—More Examples

Language: a(a+ ba)*
a
OWO=t
b
Language:
b
(= ()
a
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Blichi Automata—More Examples

Language: a(a+ ba)*
a
OWO=
b
Language: (a*ba)“
b
=OWmO
a
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Formal Verification: Model Checking

Translation

TL of Negation
Promela \

Automaton

Transition '

System
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Linear Temporal Logic and Biichi Automata

LTL and Buchi Automata are connected J

Recall
Definition (Validity Relation)

Given a transition system 7 = (S, —, So, L), a temporal formula ¢ is
valid in 7 (write T |= ¢) iff 7 |= ¢ for all traces 7 of T .

A trace of the transition system is an infinite sequence of interpretations.
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Linear Temporal Logic and Biichi Automata

LTL and Buchi Automata are connected J

Recall
Definition (Validity Relation)

Given a transition system 7 = (S, —, So, L), a temporal formula ¢ is
valid in 7 (write T = ¢) iff 7 |= ¢ for all traces 7 of T.

A trace of the transition system is an infinite sequence of interpretations.

Intended Connection
Given an LTL formula ¢:

Construct a Biichi automaton accepting exactly those traces (infinite
sequences of interpretations) that satisfy ¢.
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Encoding an LTL Formula as a Biichi Automaton

AP set of propositional variables, e.g., AP = {r, s}

Suitable alphabet X for Biichi automaton?
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Encoding an LTL Formula as a Biichi Automaton

AP set of propositional variables, e.g., AP = {r, s}

Suitable alphabet X for Biichi automaton?

A state transition of Biichi automaton must represent an interpretation
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Encoding an LTL Formula as a Biichi Automaton

AP set of propositional variables, e.g., AP = {r, s}

Suitable alphabet X for Biichi automaton?
A state transition of Biichi automaton must represent an interpretation

Choose ¥ to be the set of all interpretations over AP, encoded as 2.

(Recall slide ‘Interpretations as Sets')

Example
Z:{(Z),{r},{s},{r,S}} J
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Biichi Automaton for LTL Formula By Example

Example (Biichi automaton for formula r over AP = {r,s})

A Biichi automaton B accepting exactly those runs ¢ satisfying r
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Biichi Automaton for LTL Formula By Example

Example (Biichi automaton for formula r over AP = {r,s})

A Biichi automaton B accepting exactly those runs ¢ satisfying r

Start{) {r}Ar s} @32

In the first state sp (of o) at least r must hold, the rest is arbitrary
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Biichi Automaton for LTL Formula By Example

Example (Biichi automaton for formula r over AP = {r,s})

A Biichi automaton B accepting exactly those runs ¢ satisfying r

Start{) {r}Ar s} @32

In the first state sp (of o) at least r must hold, the rest is arbitrary

Example (Biichi automaton for formula Or over AP = {r,s})
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Biichi Automaton for LTL Formula By Example

Example (Biichi automaton for formula r over AP = {r,s})

A Biichi automaton B accepting exactly those runs ¢ satisfying r

Start{) {r}Ar s} @DZ

In the first state sp (of o) at least r must hold, the rest is arbitrary

Example (Biichi automaton for formula Or over AP = {r,s})
start @:} {r}A{r,s}

In all states s (of o) at least r must hold
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Biichi Automaton for LTL Formula By Example

Example (Biichi automaton for formula r over AP = {r,s})

A Biichi automaton B accepting exactly those runs ¢ satisfying r

Start{) {r}Ar s} @32

In the first state sp (of o) at least r must hold, the rest is arbitrary

Example (Biichi automaton for formula Or over AP = {r,s})

start @D Y,

Y, ={llleX rel}

In all states s (of o) at least r must hold
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Biichi Automaton for LTL Formula By Example

Example (Biichi automaton for formula OOr over AP = {r,s})

start —»Q @
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Biichi Automaton for LTL Formula By Example

Example (Biichi automaton for formula ¢Ur over AP = {r,s})

start%@ trhir s} @D{r},{r,s}
h
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Biichi Automaton for LTL Formula By Example

Example (Biichi automaton for formula ¢Ur over AP = {r,s})

= @3
start >,
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Formal Verification: Model Checking

Translation

of Negation

Automaton

Transition
Semantics System

2 2

Intersection

Promela \

\

accepts

no run?
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Literature for this Lecture

Ben-Ari Section 5.2.1
(only syntax of LTL)
Baier and Katoen Principles of Model Checking,
May 2008, The MIT Press,
ISBN: 0-262-02649-X
(for in depth theory of model checking)
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