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Verified compilers

L— What?

- Comes with a machine-checked proof that for any program,
which does not generate a compilation error, the source and
target programs behave identically

——

(Sometimes called certified compilers, but that’s misleading...)

Trusting the compiler

Bugs
When finding a bug, we go to great lengths to find it in our own code.

+ Most programmers trust the compiler to generate correct code

+ The most important task of the compiler is to generate correct
code

Maybe it is worth the cost?
Establishing compiler correctness

Cost reduction?

Alternatives

« Proving the correctness of a compiler is prohibitively expensive
- Testing is the only viable option

A

( ... but with testing you never know you caught all bugs! )

All (unverified) compilers have bugs

‘“ Every compiler we tested was found to
crash and also to silently generate
wrong code when presented with valid input.”

PLDI'11
Finding and Understanding Bugs in C Compilers

Xucjun Yang  Yang Chen  Eric Eide John Regehr
— _

*“ [The verified part of] CompCert is the only compiler
we have tested for which Csmith cannot find wrong-code
errors.This is not for lack of trying: we have devoted
about six CPU-years to the task.”
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This lecture:
Verified compilers

What? Proof that compiler produces good code.

Why?  To avoid bugs, to avoid testing.

rest of

How? By mathematical proof...
this lecture

Proving a compiler correct

like first-order logic, or higher-order logic )

Ingredients:

* a formal logic for the proofs
 accurate models of

proofs are only about things

* the source language that live within the logic, i.e.

* the target language we need to represent the

+ the compiler algorithm relevant artefacts in the logic
Tools:

( a lot of details... (to get wrong) )
* a proof assistant (software)

... necessary to use mechanised proof
assistant (think, ‘Eclipse for logic’) to
avoid mistakes, missing details




Accurate model of prog. language

Model of programs:
* syntax — what it looks like
* semantics — how it behaves

(Je\.g. an interpreter for the syntax )

Major styles of (operational, relational) semantics:

* big-step this style for structured source semantics )

* small-step this style for unstructured target semantics )

... next slides provide examples.

Syntax

Source:

exp = Num num
| Var name
| Plus exp exp

Target ‘machine code’:

= Const name num
| Move name name
| Add name name name

inst

Target program consists of list of inst )

Source semantics (big-step)

Big-step semantics as relation 1 defined by rules, e.g.

lookup s in env finds v

(Num n, env) ! n (Var s, env) 1 v

(x1, env) | vi1 (x2, env) | v2

(Add x1 x2, env) 1 vl + v2

\

( called “big-step”: each step { describes complete evaluation )

Target semantics (small-step)

“small-step”: transitions describe parts of executions

We model the state as a mapping from names to values here.

step (Const s n) state = state[s ~ n]
step (Move sl s2) state = state[sl -~ state s2]
step (Add sl s2 s3) state = state[sl » state s2 + state s3]

steps [] state = state
steps (x::xs) state = steps xs (step x state)

Compiler function

generated code stores
result in register name (n)
given to compiler

|
Relies on variable names in

source to match variables
names in target.

compile (Num k) n = [Const n k

compile (Var v) n = [Move n v

compile (Plus x1 x2) n = |
compile x1 n ++ compile x2 (n+1) ++ [Add n n (n+1)]

( Uses names above n as temporaries. )

Correctness statement

Proved using proof assistant — demo!

/ For every evaluation in the source ... )
vX €énv res. for target state and k, such that ... )
(x, env) | res =
vstate k.

(vi env v. (lookup env i = SOME v) = (state i =v) A i < k) =

(let state' = steps (compile x k) state in

(state' k = res) A ) k greater than all var
vi. i1 < k =|(state' i = state 1)) names and state in sync
with source env ...

... in that case, the result res will be stored at
location k in the target state after execution

... and lower part of state left untouched. )




Well, that example was simple enough...

But:

Some people say:

A programming language isn't real until it has a self-hosting
compiler

Bootstrapping for verified compilers? Yes!

Scaling up...
POPL 2014
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Dimensions of Compiler Verification

source code

abstract syntax

< how far compiler goes )

intermediate language

bytecode Our verification covers the full

. spectrum of both dimensions.
machine code

compiler implementation

implementation
algorithm in ML

machine code as part
in machine code

of a larger system
~ >
( the thing that is verified )

ldea behind in-logic bootstrapping

input: verified compiler function )

Trustw || thy code generation:
functions in HOL (shallow embedding)

l proof-producing translation [ICFP’12, JFP’ 4]
CakeML program (deep embedding)

l verified compilation of CakeML [POPL 14,ICFP’16]
x86-64 machine code (deep embedding)

output: verified implementation of compiler function )

The CakeML at a glance

The CakeML langu strict impure functional language )
= Standard ML 'without I/O or functors

A

i.e. with almost everything else:

v higher-order functions

v mutual recursion and polymorphism

v datatypes and (nested) pattern matching
v references and (user-defined) exceptions
v modules, signatures, abstract types

The verified machine-code implementation:

parsing, type inference, compilation, garbage collection, bignums etc.
implements a read-eval-print loop (see demo).

The CakeML compiler verification
How?
Mostly standard verification techniques as presented in this lecture,

but scaled up to large examples. (Four people, two years.)

Compiler:

o--0-0-C3-0

New optimising compiler:

x86-64
0D- M- 0-

... actively developed (want to join? myreen@chalmers.se)




Compiler verification summary

Ingredients:

+ a formal logic for the proofs
* accurate models of

* the source language
* the target language
* the compiler algorithm

Tools:
* a proof assistant (software)

Method:
* (interactively) prove a simulation relation

Questions? Interested?




