Programmerade system
TDA143
Lecture on Databases

Material in course textbook

“Computer Science: An Overview”
9th /10t /1 1t Edition, J. Glenn Brookshear

Chapter9
GrahamKemp
kemp@chalmers.se
Room 6475, EDIT Building
http://www.cse.chalmers.se/~kemp/

Why study databases? Examples

* Banking
— Drove the development of DBMS

* Industry

Databases are
everywhere!

— Inventories, personnel records, sales ...
— Production Control
— Test data
* Research
— Sensordata
— Geographical data
— Laboratory information management systems
— Biological data (e.g. genome data)

File-oriented information system

Customer Payroll Employee Inventory Sales
records records records records records

Customer . .
service Payroll Personnel ||Purchasing|| Marketing

department department | | department | | department | | department

Problems with working with files

* Redundancy
— Updates
—Wasted space
» Changing a data format will require all
application programs that read/write these
files to be changed.

» Sharing information between departments
can be difficult.

Database-oriented information

system
Customer .
service Marketing
department
department

Payroll
department

Purchasing
department

Personnel
department

A databaseis ...

« acollection of data

* managed by specialised software called a
database management system (DBMS)
(or, informally, a “database system”)

* needed forlarge amounts of persistent,
structured, reliable and shared data

Using a DBMS: an overview

| Application Program

Database Management
System

Centralised control of data

« amount of redundancy can bereduced
— less inconsistency in the stored data
« stored data can be shared
+ standards can be enforced
» security restrictions can be applied
* dataintegrity canbe maintained
— validation done in one place
« conflicting requirements can be balanced
» provides data independence

— can change storage structure without affecting
applications

Motivation for database systems

Needed for large amounts of persistent, structured, reliable and shared data
(Ted Codd, 1973)

* Large amounts:
— needs indexing for fastaccess
— needs a load utility
Persistent:
— needs schema definiton oftypeswhich evdves
Structured:
— storage schema heldwith data
— query language (eg.SQL) independertofstorage
Shared:
— locking mechanismfor concurrentupdae
— access cortrol via DBMS
— centralised integrity checking
Reliable:
— changes to disc pages are logged
— commitprotects againstprogramofdisc crash
— canundo (rollback) uncommitted updates

Traditional File Structures

A short digression ...

UNIX file management

Actual organisation is hidden

+ Just as the file management systemin an
operating system gives the users the
illusion that a text file is stored on disc as a
long consecutive sequence of characters

* ... a database managementsystemgives
the users the illusion that theirdataare

stored on disc in accordance with a data
model.

Data models

 Storing data in a computer system
requires describing the dataaccordingto
some data model, in a formwhich can be
representeddirectly withinthe computer.

» A data model specifies the rules
according to which data are structured and
also the associated operations that are
permitted.

Data models: brief overview

* “No data model”
— Flat files

+ “Classical” data models

— Hierarchical (tree)
— Network (e.g. CODASYL) (graph)
— Relational (Codd, 1970) (tables)

+ Semantic data models, e.g.
— Entity-Relationship model (Chen, 1976)
— Functional Data Model (Shipman, 1981)
— SDM (Hammer and Mcleod, 1981)

Relational DBMSs

* Very simple model
» Familiartabular structure

» Has a good theoretical foundation from
mathematics (set theory)

* Industrial strength implementations, e.g.

— Oracle, Sybase, MySQL, PostgreSQL,
Microsoft SQL Server, DB2 (IBM mainframes)

» Large usercommunity

Relation Schemas

* In the relational datamodel,a design
consists of a set of relation schemas.

* Arelation schema has
—aname, and
—a set of attributes (+ types):

Courses (code, name, teacher)

R - ~

Schema vs Instance

+ Schema (or intension or a relation)
— name and attributes of a relation

Courses (code, name, teacher)
+ Instances (or extension of a relation)

— the actual data
— aset of tuples:

From schemato database

» The relations of the database schemabecome
the tables when we implement the database in a
DBMS. The tuples become the rows:

Courses (code, name, teacher)

DO

{ (’TDA357', 'Di ‘', ’Niklas "y,
("TINO90’ , 'Algorithms’, 'Devdatt Dubhashi’) } e — P —
TDA357 ‘Databases’ ‘Niklas Broberg
"TINO9O' "Algorithms’ ‘Devatt Dubhashi
Keys Composite keys

* Relations have keys — attributes whose
values uniquely determine the values ofall

otherattributes in the relation.

Courses(code, name, teacher)

{('TDA357’, 'Databases’, 'Niklas Broberg’),

(" TDE3ST ikl S el Dot t—DUBHAShL ') }

» Keys can consist of several attributes

Courses (code, period, name, teacher)

{ (' TDA357’, 2, ’'Databases’, ’'Graham Kemp’) ,
(' TDA357’ , 3, 'Databases’, ’'Niklas Broberg’)}

Schemas and subschemas

» A schema is a description of the entire
database structure.

» A subschema is a descriptionof only a
part of the database structure.
— Tailored to the needs of a user group
— Controls access todata

Database design

» We design the conceptual model forour
database usinga high-level data model
like the Enitity-Relationship model ...

« ...then we translate this designto the
relational model (forimplementationin an
RDBMS).

Enitity-Relationship Diagram

Example:

« A course has lectures in aroom.

* A course is related to a room by the fact that the course has lectures
in that room.

« A relationship is often named with a verb (e.g. HasLecturesIn)

Translation to relations

» Arelationship between two entities is
translated intoa relation, where the
attributes are the keys of therelated

entities.
CoD>—{ oo &
= What?

Translation to relations

* Arelationship between two entities is
translated into a relation, where the
attributes are the keys of therelated
entities.

@D
D{eoire <G> oon |

Courses(code, name, teacher)

=> Rooms (name, #seats)

LecturesIn(code, name)

Relational operators (1)

» Selection
— Choose rows from a relation
— State condition that rows must satisfy

Ocondition(T)
Examples:

O seats>100(Rooms)
O (code="TDA143" AND day="Friday’)(L€CtUres)

Relational operators (2)

* Projection
— Choose columns from a relation
— State which columns (attributes)

Tleode(CoOUrses)
TTname, seats(ROOMS)

Examples:

Relational operators (3)

R1x R2
— Cartesian product
— Combine each row of Ry with each row of R;

R1 Xcondition R2
— join operator

— Combine row of Ry with each row of R if the
conditionis true

| R1 Mcondition Re = Tcondition(R1 X Ro) |

SQL

+ SQL = Structured Query Language

» Avery high-level declarativelanguage.

— Specify what informationyou want, not how to
get that information (like you wouldin e.g.
Java).

» Based on Relational Algebra

SELECT-FROM-WHERE

« Basic structure of an SQL query:

SELECT attributes
FROM tables
WHERE tests over rows

SELECT A

ma > [my(0(T))

Example:

course | per teacher
TDA357

N

Niklas Broberg

GivenCourses =

Example:

course | per teacher
TDA357

N

. Niklas Brob:
GivenCourses = 138 To0er9

TDA357 |4 RogardtHeldal TDA357 |4 RogardtHeldal
TINO9O |1 DevdattDubhashi TINO9O |1 DevdattDubhashi
SELECT * SELECT *
FROM GivenCourses FROM GivenCourses
WHERE course = ’'TDA357’; WHERE course = ’'TDA357';
Result = Result = course | per teacher
What'? TDA357 |2 Niklas Broberg
TDA357 |4 RogardtHeldal
Example: Example:
course | per teacher course | per teacher

TDA357 |2 Niklas Broberg
TDA357 |4 RogardtHeldal
TINO9O 1 DevdattDubhash
SELECT course, teacher

FROM GivenCourses

WHERE course = 'TDA357';

GivenCourses =

Result =
What?

TDA357 |2 Niklas Broberg
TDA357 |4 RogardtHeldal
TINO90O 1 DevdattDubhashi
SELECT course, teacher

FROM GivenCourses

WHERE course = 'TDA357';

GivenCourses =

Result = course teacher
TDA357 | Niklas Broberg
TDA357 | RogardtHeldal

Example:
SELECT code, name, period
FROM Courses, GivenCourses
WHERE teacher = ’Niklas Broberg’
AND code = course;
GivenCourses
Courses course | per teacher
code name TDA357 |2 Niklas Broberg
TDA357 | Databases TDA357 4 RogardtHeldal
TINO90 | Aigorithms TINO9O 1 DevdattDubhash

Trcode,name,period

(oteacheF’Niklas Broberg’ & code = course
(Courses x GivenCourses))

Example:

FROM Courses, GivenCourses

code name course | per teacher
TDA357 | Databases | TDA357 2 Niklas Broberg
TDA357 | Databases | TDA357 4 RogardtHeldal
TDA357 | Databases | TIN090 1 DevdattDubhashi
2
4
1

TINO90 | Aigorithms | TDA357 Niklas Broberg
TINO90 | Aigorithms | TDA357
TINO90 | Aigorithms | TINO9O

RogardtHeldal
DevdattDubhashi

(Courses x GivenCourses)

Example:

FROM Courses, GivenCourses
WHERE teacher = ’‘Niklas Broberg’
AND code = course;

code name course | per Teacher
TDA357 | Databases | TDA357 |2 Niklas Broberg
TDA357 | Databases | TDA357 |4 RogardtHeldal
TDA357 | Databases | TINO9O 1 DevdattDubhashi

TINO9O | Algorif —r—
= code name course | per teacher
TINO9O | Algori

— TDA357 | Databases | TDA357 2 Niklas Broberg
TINO9O | Algori I I T

(Oteacher=Nikias Broberd &code = course(Courses x GivenCourses))

Example:

SELECT code, name, period

FROM Courses, GivenCourses

WHERE teacher = 'Niklas Broberg’
AND code = course;

code name course | per teacher
TDA357 | Databases | TDA357 | 2 Niklas Broberg

code name | per
TDA357 | Databases

[N}

Trcode,name,period(CteacheF'Niklas Broberg &code = couse(Courses x GivenCourses))

Inserting data

INSERT INTO tablename
VALUES (values for attributes);

INSERT INTO Courses
VALUES (’'TDA357’, ’'Databases’);

code name
TDA357 |Databases

Deletions

DELETE FROM tablename
WHERE test over rows;

DELETE FROM Courses
WHERE code = ’'TDA357’;

DELETE FROM Courses;

Updates

UPDATE tablename
SET attribute =
WHERE test over rows

UPDATE GivenCourses
SET teacher = ’'Rogardt Heldal’
WHERE code = 'TDA357’

AND period = 4;

Database system architecture

Schema Source File) Data Files 2
womson 0 N Qe) Queres
Bulk Load Query Language
Uity Interpreter and Optimiser
S ockin

More about Databases

TDA357 - Databases

» 7,5 Highereducation credits
* Runs twice each year, periods 2 and 3

