
Stacks and queues

Stacks

A stack is an ADT that stores a sequence of
values
Main operations:
● push(x) – add value x to the stack
● pop() – remove the most-recently-pushed value from

the stack

LIFO: last in first out
● Value removed by pop is always the one that was

pushed most recently

Stacks

Analogy for LIFO: stack of plates
● Can only add or remove plates at the top!
● You always take off the most recent plate
● The comparison with a haystack is not as good.

Stacks

More stack operations:
● is stack empty? – is there anything on the stack?
● top() – return most-recently-pushed (“top”) value

without removing it

Example: balanced brackets

Given a string:
“hello (hello is a greetng [sic] {“sic” is used when
quoting a text that contains a typo (or archaic [and
nowadays wrong] spelling) to show that the mistake
was in the original text (and not introduced while
copying the quote)})”

Check that all brackets match:
● Every opening bracket has a closing bracket
● Every closing bracket has an opening bracket
● Nested brackets match up: no “([)]”!

Algorithm

Maintain a stack of opened brackets
● Initially stack is empty
● Go through string one character at a time
● If we see an opening bracket, push it
● If we see a closing bracket, pop from the stack and

check that it matches
– e.g., if we see a “)”, check that the popped value is a “(“

● When we get to the end of the string, check that the
stack is empty

Algorithm

Maintain a stack of opened brackets
● Initially stack is empty
● Go through string one character at a time
● If we see an opening bracket, push it
● If we see a closing bracket, pop from the stack and

check that it matches
– e.g., if we see a “)”, check that the popped value is a “(“

● When we get to the end of the string, check that
the stack is empty

Check your understanding:
What has gone wrong

if each of the steps
written in bold fails?

(stack can be empty)

More uses of stacks

The call stack, which is used by the processor
to handle function calls
● When you call a function, the processor records what

it was doing by pushing a record onto the call stack
● When a function returns, the processor pops a record

off the call stack to see what it should carry on doing

Parsing in compilers
Lots of uses in algorithms!

Stacks in Haskell are just lists

type Stack a = [a]
push :: a → Stack a → Stack a
push x xs = x:xs

pop :: Stack a → (a, Stack a)
pop (x:xs) = (x, xs)

top :: Stack a → a
top (x:xs) = x

empty :: Stack a → Bool
empty [] = True
empty (x:xs) = False

You don't need a
separate stack type

if you have
Haskell-style lists

Implementing stacks in Java

Idea: use a dynamic array!
● Push: add a new element to the end of the array
● Pop: remove element from the end of the array

Complexity: all operations have amortised
O(1) complexity
Recap of amortised complexity:
● Means n operations take O(n) time
● Although a single operation may take O(n) time, an

“expensive” operation is always balanced out by a lot
of earlier “cheap” operations

Abstract data types

You should distinguish between:
● the abstract data type (ADT) (a stack)
● its implementation (e.g. a dynamic array)

Why?
● When you use a data structure you don't care how it's

implemented
● Most ADTs have many possible implementations

Queues

A queue also stores a sequence of values
Main operations:
● enqueue(x) – add value x to the queue
● dequeue() – remove earliest-added value

FIFO: first in first out
● Value dequeued is always the oldest one that's still in

the queue

Much like a stack – but FIFO, not LIFO

Queues

Like a queue in real life!
● The first to enter the queue is the first to leave

Uses of queues

Controlling access to shared resources in an
operating system, e.g. a printer queue
A queue of requests in a web server
Also appears in lots of algorithms
● Stacks and queues both appear when an algorithm

has to remember a list of things to do

Implementing queues in Java

What's wrong with this idea?
● Implement the queue as a dynamic array
● enqueue(x): add x to the end of the dynamic array
● dequeue(): remove and return first element of array

Implementing queues in Java

What's wrong with this idea?
● Implement the queue as a dynamic array
● enqueue(x): add x to the end of the dynamic array
● dequeue(): remove and return first element of array

To dequeue, we'd have to
copy the entire rest of the

array down one place...
takes O(n) time

Dynamic arrays are no good

A queue containing
A, B, C:

Dequeue removes A:

Moving the rest of the queue into place takes
O(n) time!

A B C

B C

Bounded queues

Let's solve a simpler problem first:
bounded queues
A bounded queue is a queue with a fixed
capacity, e.g. 5
● The queue can't contain more than 5 elements at a

time
● You typically choose the capacity when you create the

queue

Bounded queues

An array, plus two indices back and front

back: where we enqueue the next element
front: where we dequeue the next element

A B C

backfront

Queue contains
A, B, C

Bounded queues

After enqueueing D

array[back] = D; back = back+1

A B C D

backfront

Queue contains
A, B, C, D

Bounded queues

After dequeueing (to get A)

result = array[front]; front = front+1

B C D

backfront

Queue contains
B, C, D

Thinking formally about queues

What is the contents of one of our array-queues?
● Everything from index front to index back-1

If we specify the meaning of the array like this, there is
only one sensible way to implement enqueue and
dequeue!
● Before dequeue:

contents is array[front], array[front+1], …, array[back-1]
● After dequeue: array[front] should be gone,

contents is array[front+1], …, array[back-1]
● Only good way to do this is front = front + 1!

Data structure design hint:
don't just think what everything should do!
Work out themeaning of the data structure too.

Bounded queues

After enqueueing E and dequeueing

What's the problem here?

C D E

backfront

Queues as circular buffers

Problem: when back reaches the end of the
array, we can't enqueue anything else
Idea: circular buffer
● When back reaches the end of the array, put the next

element at index 0 – and set back to 0
● Next after that goes at index 1
● front wraps around in the same way

Use all the extra space that's left in the
beginning of the array after we dequeue!

Bounded queues

Try again – after enqueueing E

back wraps around to index 0

C D E

back front

Bounded queues

Now after enqueueing F

Meaning: queue contains everything from
front to back-1 still.
But wrapping around if back < front!
Exercise: phrase this precisely.

F C D E

back front

Queue contains
C, D, E, F

Bounded queues

After dequeueing twice

F E

back front

Queue contains
E, F

Bounded queues

After dequeueing again

front wraps around too!

F

backfront

Queue contains
F

Circular buffers

Basic idea: an array, plus two indices for the
front and back of the queue
● These indices wrap around when reaching the end of

the array, which is what makes it work

Exercise: what sequence of elements does a
circular buffer represent?
The best bounded queue implementation!

Bounded queues

Circular buffers make a fine bounded queue
To make an unbounded queue, let's be
inspired by dynamic arrays
● Dynamic arrays: fixed-size array, double the size when

it gets full
● Unbounded queues: bounded queue, double the

capacity when it gets full

Whenever the queue gets full, allocate a new
queue of double the capacity, and copy the
old queue to the new queue

Reallocation, how not to do it

What's wrong with resizing like this?

F G C D E

back front

F G C D E

back front

Reallocation, how not to do it

What's wrong with resizing like this?

F G C D E

back front

F G C D E

back front

Queue contains
C, D, E,

five blank spaces,
F, G!

Reallocation, how not to do it

Instead, repeatedly dequeue from the old
queue and enqueue into the new queue:

F G C D E

back front

C D E F G

backfront

Summary: queues as arrays

Maintain front and back indeces
● Enqueue elements at back, remove from front

Circular array
● front and back wrap around when they reach the end

Idea from dynamic arrays
● When the queue gets full, allocate a new one of twice the size
● Don't just resize the array – safer to use the queue

operations to copy from the old queue to the new queue

Important implementation note!
● To tell when array is full, need an extra variable to hold the

current size of the queue (exercise: why?)

Linked list implementing queues

● Linked lists can also implement queues.
● Elements can be added at the end and

removed at the beginning (or vice versa) in
constant time.

● We’ll have a look at linked lists later on.

Queues in Haskell

type Queue a = ???
enqueue :: a → Queue a → Queue a
dequeue :: Queue a → (a, Queue a)
empty :: Queue a → Bool

[better API:
dequeue :: Queue a → Maybe (a, Queue a)]

One possibility: using a list

type Queue a = [a]
enqueue :: a → Queue a → Queue a
enqueue x xs = xs ++ [x]

dequeue :: Queue a → (a, Queue a)
dequeue (x:xs) = (x, xs)

empty :: Queue a → Bool
empty [] = True
empty (x:xs) = False Why not do

it like this?

A cunning plan

Implement a queue using two lists, the “front
part” and the “back part”

front part

back part

Enqueue into the back part, dequeue from
the front part – and move items from the
back to the front when needed

A B C

E D

Queue
contains
A B C D E

A cunning plan

Enqueuing F:

front part

back part

Only need to use cons – constant time

A B C

F D

Queue
contains

A B C D E F

E

A cunning plan

Dequeueing A, B

front part

back part

Only need to look at front of list – constant
time

C

F D

Queue
contains
C D E F

E

A cunning plan

Dequeueing C

front part

back part

What if we want to dequeue again?

F D

Queue
contains

D E F

E

A cunning plan

When the front part is empty, reverse the
back part and move it there!

front part

back part

Now we can dequeue again!

D F

Queue
contains

D E FE

Queues in Haskell

A queue is a pair of lists
● data Queue a = Queue { front :: [a], back :: [a] }

● To enqueue an element, add it to back

● To dequeue, remove an element from front

● If front is empty, replace it with reverse back

The queue Queue front back represents
the sequence front ++ reverse back
● For example, Queue [1,2,3] [6,5,4] represents

the queue 1 2 3 4 5 6
● By writing this down, we see why we need to reverse

when moving back to front!

Is this efficient?

Isn't this slow? reverse takes O(n) time
No: we get amortised O(1) complexity
If we enqueue and dequeue n items...
● We spend some time reversing stuff
● But only the stuff we enqueue gets reversed,

and each item is only added to back once,
so the lists we reverse contain n items in total

● So the reversing takes O(n) time for n items
● → O(1) time average per item enqueued

Double-ended queues

So far we have seen:
● Queues – add elements to one end and remove them from

the other end
● Stacks – add and remove elements from the same end

In a deque, you can add and remove elements
from both ends
● add to front, add to rear
● remove from front, remove from rear

Good news – circular arrays support this easily
● For the functional version, have to be a bit careful to get

the right complexity – see exercise

In practice

Your favourite programming language should
have a library module for stacks, queues and
deques
● Java: use java.util.Deque<E> – provides addFirst/Last,
removeFirst/Last methods

● The Deque<E> interface is implemented by ArrayDeque
(circular, dynamic array) and LinkedList, among others.

● Note: Java also provides a Stack class, but this is deprecated –
don't use it

● Haskell: instead of a stack, just use a list
● For queues and deques, use Data.Sequence – a general-

purpose sequence data type

Stacks, queues, deques – summary

All three extremely common
● Stacks: LIFO, queues: FIFO, deques: generalise both
● Often used to maintain a set of tasks to do later
● Imperative language: stacks are dynamic array, queues are circular

buffers, O(1) amortised complexity
● Functional language: stacks are lists, deques can be implemented as a

pair of lists with O(1) amortised complexity

Data structure design hint: always think about what the
representation of a data structure means!
● e.g. “what queue does this circular buffer represent?”
● This is the main design decision you have to make – it drives everything

else
● This lets you design new data structures systematically
● And also understand existing ones

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

