

Complexity

Complexity

This lecture is all about how to describe the
performance of an algorithm

Last time we had three versions of the file-
reading program. For a file of size n:
● The first one needed to copy n2/2 characters
● The second one needed to copy n2/200 characters
● The third needed to copy 2n characters

We worked out these formulas, but it was
a bit of work – now we'll see an easier way

Big idea:
ignore constant factors!

n2/200

2n

Big O (sv: Ordo) notation

Instead of saying...
● The first implementation copies n2/2 characters
● The second copies n2/200 characters
● The third copies 2n characters

We will just say...
● The first implementation copies O(n2) characters
● The second copies O(n2) characters
● The third copies O(n) characters

O(n2) means “proportional to n2”
(almost)

Time complexity

With big-O notation, it doesn't matter
whether we count steps or time!

As long as each step takes a constant
amount of time:
● if the number of steps is proportional to n2

● then the amount of time is proportional to n2

We say that the algorithm has O(n2)
time complexity or simply complexity

Growth rates
Imagine that we double the input size from n to 2n.

If an algorithm is...
● O(1), then it takes the same time as before
● O(log n), then it takes a constant amount more
● O(n), then it takes twice as long
● O(n log n), then it takes twice as long plus a little bit more
● O(n2), then it takes four times as long

If an algorithm is O(2n), then adding one element

makes it take twice as long

Big O tells you how the performance of an algorithm is
affected by the input size

A sneak peek

boolean unique(Object[] a) {

 for(int i = 0; i < a.length; i++)

 for (int j = 0; j < i; j++)

 if (a[i].equals(a[j]))

 return false;

 return true;

}

Outer loop runs
O(n) times

Inner loop runs
O(n) times

for each outer loop

O(n) × O(n) = O(n2)

The mathematics of big O

Big O, formally

Big O measures the growth of a
mathematical function
● Typically a function T(n) giving the number of

steps taken by an algorithm on input of size n

● But can also be used to measure space

complexity (memory usage) or anything else

So for the file-copying program:
● T(n) = n2/2
● T(n) is O(n2)

Big O, formally

What does it mean to say “T(n) is O(n2)”?

We could say it means T(n) is
proportional to n2

● i.e. T(n) = kn2 for some k
● e.g. T(n) = n2/2 is O(n2) (let k = ½)

But this is too restrictive!
● We want T(n) = n(n-1)/2 to be O(n2)
● We want T(n) = n2 + 1 to be O(n2)

Big O, formally

Instead, we say that T(n) is O(n2) if:
● T(n) ≤ kn2 for some k,

i.e. T(n) is proportional to n2 or lower!
● This only has to hold for big enough n:

i.e. for all n above some threshold n0

If you draw the graphs of T(n) and kn2, at some point the graph
of kn2 must permanently overtake the graph of T(n)
● In other words, T(n) grows more slowly than kn2

Note that big-O notation is allowed to overestimate the
complexity!

Compact definition of Big O:

T(n) ∈ O(f(n)) when ∃k,n0:T(n) ≤ kf(n) for n≥n0

An example: n2 + 2n + 3 is O(n2)

n2+2n+3 ≤ 2n2

for n ≥ 3

More examples

● Is 3n + 5 in O(n)?
● Is n2 + 2n + 3 in O(n3)?
● Is it in O(n)?
● Is 5 in O(1)?

Adding big O (a hierarchy)

O(1) < O(log n) < O(n) < O(n log n) < O(n2)
< O(n3) < O(2n)

When adding a term lower in the hierarchy
to one higher in the hierarchy, the lower-
complexity term disappears:

O(1) + O(log n) = O(log n)

O(log n) + O(nk) = O(nk) (if k ≥ 0)

O(nj) + O(nk) = O(nk), if j ≤ k

O(nk) + O(2n) = O(2n)

An example: n2 + 2n + 3 is O(n2)

Use hierarchy:
n2 + 2n + 3

=
O(n2) + O(n) + O(1)

=
O(n2)

Quiz

What are these in Big O notation?
● n2 + 11
● 2n3 + 3n + 1
● n4 + 2n

Just use hierarchy!

n2 + 11 = O(n2) + O(1) = O(n2)

2n3 + 3n + 1 = O(n3) + O(n) + O(1) =
O(n3)

n4 + 2n = O(n4) + O(2n) = O(2n)

Multiplying big O

O(this) × O(that) = O(this × that)
● e.g., O(n2) × O(log n) = O(n2 log n)

You can drop constant factors:
● k × O(f(n)) = O(f(n)), if k is constant
● e.g. 2 × O(n) = O(n)

(Exercise: show that these are true)

Quiz

What is (n2 + 3)(2n × n) + log10 n
in Big O notation?

Answer

(n2 + 3)(2n × n) + log10 n
= O(n2) × O(2n × n) + O(log n)
= O(2n × n3) + O(log n) (multiplication)
= O(2n × n3) (hierarchy)

log
10

n = log n / log 10
i.e. log n times a
constant factor

Big O and related concepts

f(n) is asymptotically an upper bound of the growth
rate of T(n):

T(n) ∈ O(f(n)) when ∃k,n0:T(n) ≤ kf(n) for n≥n0

f(n) is asymptotically a lower bound of the growth rate
of T(n):

T(n) ∈ Ω(f(n)) when ∃k,n0:T(n) ≥ kf(n) for n≥n0

f(n) is asymptotically a lower and upper bound of the
growth rate of T(n):

T(n) ∈ Θ(f(n)) when T(n) ∈ O(f(n)) and T(n) ∈ Ω(f(n))

Reasoning about programs

Cost Models

We need to simplify how computers work.
● Uniform model:

● Unbounded numbers (not limited to e.g. 64 bits)
● Infinite memory

● Logarithmic model:
● Data size is measured in number of bits
● Infinite memory

In most cases we’ll use the uniform model.

Complexity of a program

Most “primitive” operations take
constant time:

int add(int x, int y) {
 return x + y;
}

O(1)

Complexity of loops

The complexity of a loop is:
the number of times it runs
times the complexity of the body

Complexity of a program

What about loops?

(Assume the arrays size is n)
void add(double[] a, double[] b) {
 for (int i = 0; i < a.length; i++)
 a[i] += b[i];
}

Complexity of a program

What about loops?

(Assume the arrays size is n)
void add(double[] a, double[] b) {
 for (int i = 0; i < a.length; i++)
 a[i] += b[i];
}

Loop runs
O(n) times

Loop body takes
O(1) time

O(1) × O(n) = O(n)

Complexity of a program

What about loops?

(Assume the array size is n)
boolean member(Object[] array, Object x) {
 for (int i = 0; i < array.length; i++)
 if (array[i].equals(x))
 return true;
 return false;
}

Worst case complexity

● Often not only the size of the data influences
the running time, but also the values.

● The longest possible running time for a given
data size is called the worst case complexity
(sv: värsta falls-komplexiteten)

● You can also compute the best case
complexity, but it’s not as useful since what you
want in most cases is a guarantee that running
a program will not take more than a certin time.

Complexity of a program

What about loops?

(Assume the array size is n)
boolean member(Object[] array, Object x) {
 for (int i = 0; i < array.length; i++)
 if (array[i].equals(x))
 return true;
 return false;
}

Loop runs
O(n) times in
worst case

Loop body takes
O(1) time

Worst case
complexity:

O(1) × O(n) = O(n)

What about this one?

boolean unique(Object[] a) {

 for(int i = 0; i < a.length; i++)

 for (int j = 0; j < a.length; j++)

 if (a[i].equals(a[j]) && i != j)

 return false;

 return true;

}

What about this one?

boolean unique(Object[] a) {

 for(int i = 0; i < a.length; i++)

 for (int j = 0; j < a.length; j++)

 if (a[i].equals(a[j]) && i != j)

 return false;

 return true;

}

Loop body:
O(1)

Inner loop runs
n times:

O(n) × O(1) = O(n)

Outer loop runs
n times:

O(n) × O(n) = O(n2)

What about this one?

void function(int n) {

 for(int i = 0; i < n*n; i++)

 for (int j = 0; j < n/2; j++)

 “something taking O(1) time”

}

What about this one?

void function(int n) {

 for(int i = 0; i < n*n; i++)

 for (int j = 0; j < n/2; j++)

 “something taking O(1) time”

} Loop body:
O(1)

Inner loop runs
n/2 = O(n) times:
O(n) × O(1) = O(n)

Outer loop runs
n2 times:

O(n2) × O(n) = O(n3)

Here's a new one

boolean unique(Object[] a) {

 for(int i = 0; i < a.length; i++)

 for (int j = 0; j < i; j++)

 if (a[i].equals(a[j]))

 return false;

 return true;

}

Here's a new one

boolean unique(Object[] a) {

 for(int i = 0; i < a.length; i++)

 for (int j = 0; j < i; j++)

 if (a[i].equals(a[j]))

 return false;

 return true;

}

Body is O(1)

Inner loop is
i × O(1) = O(i)??
But it should be
in terms of n?

Here's a new one

boolean unique(Object[] a) {

 for(int i = 0; i < a.length; i++)

 for (int j = 0; j < i; j++)

 if (a[i].equals(a[j]))

 return false;

 return true;

}

Body is O(1)

i < n, so i is O(n)
So loop runs O(n)
times, complexity:
O(n) × O(1) = O(n)

Here's a new one

boolean unique(Object[] a) {

 for(int i = 0; i < a.length; i++)

 for (int j = 0; j < i; j++)

 if (a[i].equals(a[j]))

 return false;

 return true;

}

Body is O(1)

i < n, so i is O(n)
So loop runs O(n)
times, complexity:
O(n) × O(1) = O(n)

Outer loop runs
n times:

O(n) × O(n) = O(n2)

The example from earlier

void something(Object[] a) {

 for(int i = 0; i < a.length; i++)

 for (int j = 0; j < i; j++)

 for (int k = 0; k < j; k++)

 “something that takes 1 step”

}
i < n, j < n, k < n,

so all three loops run O(n) times
Total runtime is

O(n) × O(n) × O(n) × O(1) = O(n3)

What's the complexity?

void something(Object[] a) {

 for(int i = 0; i < a.length; i++)

 for (int j = 1; j < a.length; j *= 2)

 … // something taking O(1) time

}

What's the complexity?

void something(Object[] a) {

 for(int i = 0; i < a.length; i++)

 for (int j = 1; j < a.length; j *= 2)

 … // something taking O(1) time

}

A loop running through i = 1, 2, 4, …, n
runs O(log n) times!

Inner loop is
O(log n)

Outer loop is
O(n log n)

While loops
long squareRoot(long n) {

 long i = 0;

 long j = n+1;

 while (i + 1 != j) {

 long k = (i + j) / 2;

 if (k*k <= n) i = k;

 else j = k;

 }

 return i;

}

Each iteration takes
O(1) time...

but how many times
does the loop run?

While loops
long squareRoot(long n) {

 long i = 0;

 long j = n+1;

 while (i + 1 != j) {

 long k = (i + j) / 2;

 if (k*k <= n) i = k;

 else j = k;

 }

 return i;

}

Each iteration
takes O(1) time

...and halves
j-i, so O(log n)

iterations

Summary: loops

Basic rule for complexity of loops:
● Number of iterations times complexity of body
● for (int i = 0; i < n; i++) …: n iterations
● for (int i = 1; i ≤ n; i *= 2): O(log n) iterations
● While loops: same rule, but can be trickier to count

number of iterations

If the complexity of the body depends on the
value of the loop counter:
● e.g. O(i), where 0 ≤ i < n
● round i up to O(n)!

Sequences of statements

What's the complexity here?
(Assume that the loop bodies are O(1))
 for (int i = 0; i < n; i++) …
 for (int i = 1; i < n; i *= 2) …

Sequences of statements

What's the complexity here?
(Assume that the loop bodies are O(1))
 for (int i = 0; i < n; i++) …
 for (int i = 1; i < n; i *= 2) …

First loop: O(n)
Second loop: O(log n)
Total: O(n) + O(log n) = O(n)
For sequences, add the complexities!

A familiar scene

int[] array = {};
for (int i = 0; i < n; i++) {

int[] newArray =
new int[array.length+1];

for (int j = 0; j < i; j++)
newArray[j] = array[j];

newArray = array;
}

Assume that
each statement
takes O(1) time

A familiar scene

int[] array = {};
for (int i = 0; i < n; i++) {

int[] newArray =
new int[array.length+1];

for (int j = 0; j < i; j++)
newArray[j] = array[j];

newArray = array;
}

Inner loop
O(n)

Rest of loop body
O(n),

so loop body
O(n) + O(n) = O(n)

Outer loop:
n iterations,
O(n) body,
so O(n2)

A familiar scene, take 2

int[] array = {};
for (int i = 0; i < n; i+=100) {

int[] newArray =
new int[array.length+100];

for (int j = 0; j < i; j++)
newArray[j] = array[j];

newArray = array;
}

A familiar scene, take 2

int[] array = {};
for (int i = 0; i < n; i+=100) {

int[] newArray =
new int[array.length+100];

for (int j = 0; j < i; j++)
newArray[j] = array[j];

newArray = array;
}

Outer loop:
n/100 iterations,

which is O(n)
O(n) body,

so O(n2) still

A familiar scene, take 3

int[] array = {0};
for (int i = 1; i <= n; i*=2) {

int[] newArray =
new int[array.length*2];

for (int j = 0; j < i; j++)
newArray[j] = array[j];

newArray = array;
}

A familiar scene, take 3

int[] array = {0};
for (int i = 1; i <= n; i*=2) {

int[] newArray =
new int[array.length*2];

for (int j = 0; j < i; j++)
newArray[j] = array[j];

newArray = array;
}

Outer loop:
log n iterations,

O(n) body,
so O(n log n)??

A familiar scene, take 3

int[] array = {0};
for (int i = 1; i <= n; i*=2) {

int[] newArray =
new int[array.length*2];

for (int j = 0; j < i; j++)
newArray[j] = array[j];

newArray = array;
}

Here we
“round up”

O(i) to O(n).
This causes an
overestimate!

A complication

Our algorithm has O(n) complexity, but we've
calculated O(n log n)
● An overestimate, but not a severe one

(If n = 1000000 then n log n = 20n)
● This can happen but is normally not severe
● To get the right answer: do the maths

Good news: for “normal” loops this doesn't happen
● If all bounds are n, or n2, or another loop variable, or a loop

variable squared, or …

Main exception: loop variable i doubles every time,
body complexity depends on i

Doing the sums

In our example:
● The inner loop's complexity is O(i)
● In the outer loop, i ranges over 1, 2, 4, 8, …, 2a

Instead of rounding up, we will add up the
time for all the iterations of the loop:

1 + 2 + 4 + 8 + … + 2a

= 2 × 2a – 1 < 2 × 2a

Since 2a ≤ n, the total time is at most 2n,
which is O(n)

A last example

for (int i = 1; i <= n; i *= 2) {
 for (int j = 0; j < n*n; j++)
 for (int k = 0; k <= j; k++)
 // O(1)
 for (int j = 0; j < n; j++)
 // O(1)
}

A last example

for (int i = 1; i <= n; i *= 2) {
 for (int j = 0; j < n*n; j++)
 for (int k = 0; k <= j; k++)
 // O(1)
 for (int j = 0; j < n; j++)
 // O(1)
}

Total: O(log n) × (O(n2) × O(n2) + O(n))
= O(n4 log n)

k <= j < n*n
so this loop is

O(n2)

The outer loop
runs O(log n)

times

This loop is
O(n)

The j-loop
runs n2 times

Nested loops with dependent
iteration intervals

How many steps does this function take on an
array of length n (in the worst case)?
boolean unique(Object[] a) {

 for(int i = 0; i < a.length; i++)

 for (int j = 0; j < a.length; j++)

 if (a[i].equals(a[j]) && i != j)

 return false;

 return true;

}

Assume that
loop body takes

1 step

What happens without big O?

How many steps does this function take on an
array of length n (in the worst case)?
boolean unique(Object[] a) {

 for(int i = 0; i < a.length; i++)

 for (int j = 0; j < a.length; j++)

 if (a[i].equals(a[j]) && i != j)

 return false;

 return true;

}

Outer loop runs n times
Each time, inner loop

runs n times

Total: n × n = n2

What about this one?

boolean unique(Object[] a) {

 for(int i = 0; i < a.length; i++)

 for (int j = 0; j < i; j++)
 if (a[i].equals(a[j]))

 return false;

 return true;

}

Loop runs to i
instead of n

Some hard sums

When i = 0, inner loop runs 0 times

When i = 1, inner loop runs 1 time

…

When i = n-1, inner loop runs n-1 times

Total:

● = 0 + 1 + 2 + … + n-1

which is n(n-1)/2

∑
i=0

n−1

i

What about this one?

boolean unique(Object[] a) {

 for(int i = 0; i < a.length; i++)

 for (int j = 0; j < i; j++)

 if (a[i].equals(a[j]))

 return false;

 return true;

}

Answer:
n(n-1)/2

What about this one?

void something(Object[] a) {

 for(int i = 0; i < a.length; i++)

 for (int j = 0; j < i; j++)

 for (int k = 0; k < j; k++)

 “something that takes 1 step”

}

More hard sums

Outer loop:
i goes from 0 to n-1

Middle loop:
j goes from 0 to i-1

Inner loop:
k goes from 0 to j-1

Counts: how many values i, j, k where
0 ≤ i < n, 0 ≤ j < i, 0 ≤ k ≤ j

∑
i=0

n−1

∑
j=0

i−1

∑
k=0

j−1

1

More hard sums

Counts: how many values i, j, k where
0 ≤ i < n, 0 ≤ j < i, 0 ≤ k ≤ j

∑
i=0

n−1

∑
j=0

i−1

∑
k=0

j−1

1

Wolfram Alpha says it's
n(n-1)(n-2)/6

What about this one?

void something(Object[] a) {

 for(int i = 0; i < a.length; i++)

 for (int j = 0; j < i; j++)

 for (int k = 0; k < j; k++)

 “something that takes 1 step”

}

Answer:
n(n-1)(n-2)/6,

apparently

Amortized analysis

● A single append-operation for a dynamic
array:

Time complexity: O(n) in worst case,
which is pessimistic.

public void append(char c) {
 if (size == string.length) {
 // Create a new array, twice as big as before.
 char[] newString = new char[string.length*2];
 for (int i = 0; i < string.length; i++)
 newString[i] = string[i];
 string = newString;
 }
 string[size] = c;
 size++;
 }

Amortized analysis
● Amortized analysis measures how much time

each operation will take in a sequence of
operations.

● For the append method of a dynamic array the
amortized complexity is O(1)

● There are different methods for amortized
analysis

● One is the potential method where you “pay” in
advance for future high-cost executions in such a
way that you never run out of saved “coins”.

Big O in retrospect

We lose some precision by throwing away constant
factors
● ...you probably do care about a factor of 100 performance

improvement

On the other hand, life gets much simpler:
● A small phrase like O(n2) tells you a lot about how the

performance scales when the input gets big
● It's a lot easier to calculate big-O complexity than a precise

formula (lots of good rules to help you)

Big O is normally a good compromise!
● Occasionally, need to do hard sums anyway :(

Complexity of
recursive functions

Recurrence equations
● The general way to calculate complexity for a recursive

function is to write a set of recurrence equations.
● E.g.:
 fcn f(n) {
 if (n == 0) return x;
 somecode1
 f(n-1)
 somecode2
 }

● If somecode1 + somecode2 has complexity O(n) the recurrence
equations for this function’s complexity is (we drop the O(..)):

 T(0) = 1
 T(n) = n + T(n-1) when n > 0

Solving reccurrence equations

● There isn't a general way of solving any
recurrence relation – we'll just see a
few families of them.

● In general you have to guess a solution
function (possible parameterized).

● You can then by induction confirm that
the function is correct.

Example: T(n) = O(n) + T(n-1)

T(n) = n + T(n-1)

= n + (n-1) + T(n-2)

= n + (n-1) + (n-2) + T(n-3)

= …

= n + (n-1) + (n-2) + … + 1 + T(0)

= n(n+1) / 2 + T(0)

= O(n2)

Example: T(n) = O(1) + T(n-1)

T(n) = 1 + T(n-1)

= 2 + T(n-2)

= 3 + T(n-3)

= …

= n + T(0)

= O(n)

Example: T(n) = O(1) + T(n/2)

T(n) = 1 + T(n/2)

= 2 + T(n/4)

= 3 + T(n/8)

= …

= log n + T(1)

= O(log n)

Another example: T(n) = O(n) +
T(n/2)

T(n) = n + T(n/2):

T(n) = n + T(n/2)

= n + n/2 + T(n/4)

= n + n/2 + n/4 + T(n/8)

= …

= n + n/2 + n/4 + …

< 2n

= O(n)

Functions that recurse once

T(n) = O(1) + T(n-1): T(n) = O(n)

T(n) = O(n) + T(n-1): T(n) = O(n2)

T(n) = O(1) + T(n/2): T(n) = O(log n)

T(n) = O(n) + T(n/2): T(n) = O(n)

An almost-rule-of-thumb:
● Solution is maximum recursion depth times amount of work

in one call

(except that this rule of thumb would give O(n
log n) for the last case)

Example of function that does two
recursive calls:

T(n) = O(1) + 2T(n-1)

1

1 1

1 1 1 1

1 1 1 1 1 1 1 1

O(n)
“levels”

amount of work doubles at each level

T(n)

2T(n-1)

4T(n-2)

8T(n-3)

1

1 1

1 1 1 1

1 1 1 1 1 1 1 1

O(n)
“levels”

amount of work doubles at each level

Total time is
O(2n)!

T(n)

2T(n-1)

4T(n-2)

8T(n-3)

Complexity of recursive functions

Basic idea – recurrence relations

Easy enough to write down, hard to
solve
● One technique: expand out the recurrence

and see what happens
● Another rule of thumb: multiply work done

per level with number of levels
● Drawing a diagram might help

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84

