
Hash tables

Faster than O(log n) sets and maps?

● Balanced search trees of various kinds and skip lists
provides set and map operations with logarithmic
complexity. Can we do better?

● For arrays we have constant time random access.
● Let’s assume we need to quickly look up the address of any

Swedish citizen based on personnummer.
● We can create an array with one element for each possible

personnummer and have a quick way to calculate the index.
In this array we store the addresses. We get constant time
operations.

● This is plausible because the number of possible
personnummer isn’t a whole lot bigger than the number of
Swedish citizens.

Faster than O(log n) sets and maps?

● What if google asks us to create a map that maps
every word occurring on the internet to a set of
url:s to pages where it occurs.

● Then we have a problem since the number of
possible words is much larger than the set of
occurring words. It’s difficult to design the set of
keys such that the array doesn’t end up very
sparsely populated and too big even for data
centers.

● Idea: Let’s make an array whose size is
proportionate to the number of entries and project
the keys onto the set of valid indeces.

Hash tables naively

The plan: take an array of some size k
Define a hash function that maps values (set
elements or map keys) to indices in the range
{0,...,k-1}
● Example: if the values are integers, hash function

might be h(n) = n mod k

To find, insert or remove a value x, put it in
index h(x) of the array
● Avoid searching through the whole array!

This takes constant time!

Hash tables naively, example

Implementing a set of integers, suppose we
take a hash table of size 5 and a hash
function h(n) = n mod 5

Inserting 14 gives:

5 17 8
0 1 2 3 4

This hash table contains
{5, 8, 17}

145 17 8
0 1 2 3 4

Similarly, if we
wanted to find 8,
we would look it
up in index 3

A problem

This idea doesn't work.
What if we want to insert 12 into the set?

We should store 12 at index 2, but there's already
something there!
This is called a collision
Real hash tables are naive hash tables plus tricks for
dealing with and avoiding collisions!

5 17 8
0 1 2 3 4

Handling collisions: chaining

Instead of an array of elements, have an
array of linked lists (chains)
To add an element, calculate its hash and
insert it into the list at that index

0 1 2 3 4

5 17 8

Handling collisions: chaining

Instead of an array of elements, have an
array of linked lists (chains)
To add an element, calculate its hash and
insert it into the list at that index

Inserting 12
into the table

0 1 2 3 4

5 17 8

12

Performance of chained hash tables

Chained hash tables are fast if the chains are
small
● If the size is bounded, operations are O(1) time

But if the chains get big, everything gets slow
● Can degrade to O(n) in the worst case

There are two cases when this can happen!
We have to avoid both of them.

Performance of chained hash tables

Case one: the hash table is too full
● If we try to store 1,000,000 values in an array of size 5, some

chains will be 200,000 long

Solution: expand the hash table
● If the hash table gets too full (load factor too high), allocate a

new array about twice as big (rehashing)
● load factor = number of elements / size of array

Problem: h(x) is specific to a particular size of array
● Allow the hash function to return an arbitrary integer (the

hash code of x) and then take it modulo the array size:
h(x) = x.hashCode() mod array.size

● Hash function of an integer will just be the integer itself

Performance of chained hash tables

Case two: the hash function is lousy
● Worst case: h(x) is a constant function, e.g.

h(x) = 0
● Then all elements will end up in the same chain!

The hash function must distribute values evenly
● Each hash bucket has an equal chance of being chosen
● There are no observable patterns, e.g., easy ways to construct

two values which always have the same hash

In other words, it should look like the hash
function returns a random bucket

Chained hash tables – the theory

We need:
● to resize the hash table when it gets too full
● a hash function which appears to be random

(no patterns, equal distribution)

If we do that, the average chain size will be constant
and we get expected O(1) performance for
insert/lookup/delete!
● Complexity analysis uses probability theory

When should we resize the hash table?
● If the load factor is 3 (number of elements = array size × 3), each

operation needs on average 2.5 comparisons
● Pick some constant load factor, resize when it reaches that

A slightly awkward problem

In reality, the hash function does not return a
random hash code!
● Common hash functions can have patterns

This breaks the nice theory we have. Here is one
problem:
● If we double the size of the array when resizing, the array size

will always be even
● If we then insert only even numbers into the hash table, only

the even buckets will be used

To fix this, we make the array size always be a prime
number (while roughly doubling it each time) – this
masks patterns in the hash function

Chained hash tables – summary

Start with a naive hash table
Add chaining
Double the size of the array when the load
factor is too high...
● ...but make sure the array size is always prime

Now you have a chained hash table!
● O(1) expected complexity for all operations

But how should we design hash functions?

Designing hash functions

A good hash function should distribute
values evenly
● h(x) has a roughly equal chance of being any

particular number (up to some large bound)
● That way, all chains will be roughly the same length!
● Also, similar values should not have similar hash

codes

Defining good hash functions is a black art!
● Weird heuristics that are semi-backed-up by theory

We'll settle for: unlikely to insert many
elements with the same hash

Defining a good hash function

What is bad about the following hash function on strings?
Add together the character code of each character in the string
(character code of a = 97, b = 98, c = 99 etc.)

● Maps e.g. bass and bart to the same hash code! (s + s = r + t)
● Any anagrams will have the same hash code
● Similar strings will be mapped to nearby hash codes – does

not distribute strings evenly
● There are many strings with 10 characters or less. All of

them will map to numbers 0..2550 (assuming 8 bit ascii
characters)

A hash function on strings

An idea: map strings to integers as follows:
128n + s0 · 128n-1 + s1 · 128n-2 + … + sn-1

where si is the code of the
character at index i
If all characters are ASCII
(character code 0 – 127), each
string is mapped to a different
integer!

An analogy

Suppose we want to define a hash function for
lists of digits from 0-9:
● [0,9,3,4,2,1] etc.

Idea: write out the digits as a single number with
a leading 1:
● hash([0,9,3,4,2,1]) = 1093421

(Without the leading 1 we would get the same
hash for e.g. [0,1] and [1])
The hash function on strings is doing exactly this,
only working in base 128 instead of base 10

The problem

For performance, we will calculate the hash
using machine integers so the calculation

128n + s0 · 128n-1 + s1 · 128n-2 + … + sn-1,
will happen modulo 232 (integer overflow)
So the hash will only use the last few
characters!
Solution: replace 128 with another number
(which is not a power of 2), e.g. 33

33n + s0 · 33n-1 + s1 · 33n-2 + … + sn-1

This is (almost) what Java uses for strings

Hash functions

This is called Bernstein hashing, it's only one way of
defining hash functions
● Bernstein discovered that using 33 as the constant gives good

distribution
● Why? Nobody knows, but primes are in general good

candidates.

Many hash functions are inspired by random
number generation algorithms
● The output of a good hash function should look random so

there are many similarities

Often pretty ad hoc!
● Lots of experimentation involved

Hashing composite values

class C { A a; B b; }

Use the same approach as for strings!
33 × h(a) + h(b)

Since the number of elements is always the
same we don’t need the leading “1”.

Hash tables in Java

● As we’ve seen TreeSet and TreeMap that
are search tree implementations of sets and
maps.

● In analogy there is HashSet and HashMap
which are hash table implementations.

Hash functions in Java

● The top class Object in Java has a hashCode()
method.

● This is implemented for all standard types. If you use
a standard type as elements in a HashSet or keys in a
HashMap you don’t need to worry about the hash
function.

● For your own classes you can use the Objects.hash
method.

● If you provide the instance variables as arguments to
this method it will use the hash code for each of
them and combine them in a way similar to the
example.

Linear probing

Another way (than chaining) of dealing with
collisions is linear probing
Linear probing is a kind of probing.
Uses an array of values, like in the naive hash table
If you want to store a value at index i but it's full,
store it in index i+1 instead!
If that's full, try i+2, and so on
...if you get to the end of the array, wrap around to 0
Probing is also called open addressing because the
index is not fixed. Chaining is sometimes called
closed addressing.

Example of linear probing

Name Hash Hash % 5

"Tom" 84274 4

"Dan" 68465 0

"Harry" 69496448 3

"Sam" 82879 4

"Pete" 2484038 3

Tom Dan Harry Sam Pete

[0]
[1]
[2]
[3]
[4]

[0]
[1]
[2]
[3]
[4]

Example of linear probing

Name Hash Hash % 5

"Tom" 84274 4

"Dan" 68465 0

"Harry" 69496448 3

"Sam" 82879 4

"Pete" 2484038 3

Sam Pete

[0]
[1]
[2]
[3]
[4]

 Dan Dan

 Harry Harry

 Tom Tom

[0]
[1]
[2]
[3]
[4]

Example of linear probing

Name Hash Hash % 5

"Tom" 84274 4

"Dan" 68465 0

"Harry" 69496448 3

"Sam" 82879 4

"Pete" 2484038 3

Sam

Pete

[0]
[1]
[2]
[3]
[4]

 Dan Dan

 Harry Harry

 Tom Tom

[0]
[1]
[2]
[3]
[4]

Example of linear probing

Name Hash Hash % 5

"Tom" 84274 4

"Dan" 68465 0

"Harry" 69496448 3

"Sam" 82879 4

"Pete" 2484038 3

Sam

Pete

[0]
[1]
[2]
[3]
[4]

 Dan Dan

 Harry Harry

 Tom Tom

[0]
[1]
[2]
[3]
[4]

Example of linear probing

Name Hash Hash % 5

"Tom" 84274 4

"Dan" 68465 0

"Harry" 69496448 3

"Sam" 82879 4

"Pete" 2484038 3

Pete

[0]
[1]
[2]
[3]
[4]

 Dan Dan

 Sam Sam

 Harry Harry

 Tom Tom

[0]
[1]
[2]
[3]
[4]

Example of linear probing

Name Hash Hash % 5

"Tom" 84274 4

"Dan" 68465 0

"Harry" 69496448 3

"Sam" 82879 4

"Pete" 2484038 3Pete

[0]
[1]
[2]
[3]
[4]

 Dan Dan

 Sam Sam

 Harry Harry

 Tom Tom

[0]
[1]
[2]
[3]
[4]

Example of linear probing

Name Hash Hash % 5

"Tom" 84274 4

"Dan" 68465 0

"Harry" 69496448 3

"Sam" 82879 4

"Pete" 2484038 3

[0]
[1]
[2]
[3]
[4]

 Dan Dan

 Sam Sam

 Pete Pete

 Harry Harry

 Tom Tom

[0]
[1]
[2]
[3]
[4] To find “Pete” (hash 3),

you must start at index 3
and work your way all the

way around to index 2

Searching with linear probing

To find an element under linear probing:
● Calculate the hash of the element, i
● Look at array[i]
● If it's the right element, return it!
● If there's no element there, fail
● If there's a different element there, search again at

index (i+1) % array.size

We call a group of adjacent non-empty
indices a cluster

Deleting with linear probing

Can't just remove
an element...

[0]
[1]
[2]
[3]
[4]

 Dan Dan

 Sam Sam

 Pete Pete

 Harry Harry

 Tom Tom

[0]
[1]
[2]
[3]
[4]

Name Hash Hash % 5

"Tom" 84274 4

"Dan" 68465 0

"Harry" 69496448 3

"Sam" 82879 4

"Pete" 2484038 3

If we remove Harry,
Pete will be in the wrong cluster
and we won't be able to find him

Deleting with linear probing

Instead, mark it
as deleted
(lazy deletion)

Name Hash Hash % 5

"Tom" 84274 4

"Dan" 68465 0

"Harry" 69496448 3

"Sam" 82879 4

"Pete" 2484038 3

[0]
[1]
[2]
[3]
[4]

 Dan Dan

 Sam Sam

 Pete Pete

 XXXXXXX XXXXXXX

 Tom Tom

[0]
[1]
[2]
[3]
[4]

The search algorithm
should skip over XXXXXXX

Deleting with linear probing

It's useful to think of the invariant here:
● chaining: each element is found at the index given by

its hash code
● Linear probing: each element is found at the index

given by its hash code, or a later index in the same
cluster

Naive deletion will split a cluster in two,
which may break the invariant
Hence the need for an empty value that does
not mark the end of a cluster

Linear probing performance

To insert or find an element under linear probing,
you might have to look through a whole cluster of
elements
Performance depends on the size of these clusters:
● Small clusters – expected O(1) performance
● Almost-full array – O(n) performance
● If the array is full, you can't insert anything!

Thus you need:
● to expand the array and rehash when it starts getting full
● a hash function that distributes elements evenly

Same situation as with linear chaining!

Linear probing vs chaining

In linear chaining, if you insert many values with the
same hash, values with that hash become slower to
access but other hashes are unaffected
In linear probing, you get a cluster and values with
nearby hashes become slower to access too!
As the array gets close to 100% full, you get very long
clusters in the hash table and performance becomes
dreadful
Linear probing needs a much bigger array than linear
chaining for the same performance
But: as you don't need to also create list nodes, you can
create a bigger array in the same amount of memory

Expected number of comparisons

The expected number of comparisons in a
successful search is the following:

● Open addressing:

● Chaining:

L is the load factor.

1
2
(1+ 1

1−L
)

1+ L
2

Linear probing vs chaining

load factor
(#elements /

array size)

#comparisons
(linear

probing)

#comparisons
(linear

chaining)

0 % 1.00 1.00
25 % 1.17 1.13
50 % 1.50 1.25
75 % 2.50 1.38
85 % 3.83 1.43
90 % 5.50 1.45
95 % 10.50 1.48

100 % — 1.50

200 % — 2.00

300 % — 2.50

Quadratic probing

● Linear probing is not the only kind of
probing. There are alternatives that try to
improve the tendency of linear probing to
create clusters.

● Linear probing looks at index (h(x)+i) % n for
attempt 0,1,2,…

● Quadratic probing is one of them. Here you
look at index (h(x)+i2) % n. The idea is that
you shouldn’t get stuck locally.

Re-hashing and lazily deleted entries

● Re-hashing (for both chaining and probing)
isn’t to create a larger array and copy the
contents of the old one (like dynamic arrays).
The hash value changes so you should insert
each element in the new hash table the
normal way.

● When inserting elements in a hash table
with linear probing, you should re-use an
index with a lazily deleted element if you
come across one.

Summary of hash table design

Several details to consider:
● Rehashing: resize the array when the load factor is too high
● A good hash function: need an even distribution
● Collisions: either chaining or probing

– Other alternatives to linear probing, e.g. quadratic probing
– Some sort of probing seems to be fastest

In return:
● Expected (average) O(1) performance if the hash function is random

(there are no patterns)
● Better performance in practice than BSTs
● Disadvantage: hash tables are unordered so you can't get the elements in

increasing order

Theoretical foundations of hash functions are a bit uncertain,
but heuristics work well in practice

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

