Solutions: Exam: Models of Computation TDA183 — DIT310

1. Prove or disprove the following statements:

(a) There is a function f : Bool -> Bool in Haskell (or some other programming language)
with the property that f x = True if x terminates and f x = False if x does not terminate.
This is the extensional halting problem, a proof can be found in the lecture notes

(b) There is a program f in lambda-calculus which has a normal form under one
computation strategy and has no normal form under another strategy.

Let w be a program which has no normal form, for instance w = (\x.xx)(\x.xx). Then
we can define f by f = (\y.x)w. This has no normal form if we start to compute the
argument w, but has the normal form x if we use normal order evaluation.

(c) The set of functions N -> N is enumerable.
This is not true and the proof is a diagonalization proof found in the lecture notes

(d) If we fully evaluate a program in X which has a weak head normal form then the
evaluation terminates.

The program (s loop), where loop is the program (rec x=x) is on weak head normal
form, but the full evaluation does not terminate, since loop does not terminate

2. What does it mean that a function f : N -> N is Turing-computable?
This is found in the lecture notes.

3. Explain how to use a fixpoint operator to define a recursive function!
Suppose that we have a recursive function f defined by

f=...f...f...f..
We can always rewrite this as:
f=E(f)

(by letting E be \x. ... x ... x ... X ...)
This expresses that fis a fixpoint to E, and hence we can use a fixpoint
operator to compute this: fix E will be the required fixpoint of E.

4. Give an example of a computable function (not using Ackermann’s function) which cannot be
expressed in PRF. Explain why!
The function f which is everywhere undefined is computable (for instance by the program
f x =f x in Haskell) but it is not definable in PRF, since all functions in PRF are total.



