The Scientific
Literature

John Hughes

Presenter
Presentation Notes
How do you obtain new knowledge when you need it?

Operating R. Stockton Gaines
Systems Editor

Time, Clocks, and the
Ordering of Events in
a Distributed System

Leslie Lamport
Massachusetts Computer Associates, Inc.

The concept of one event happening before another
inad d system Is ined, and is shown to
define a partial ordering of the events, A distributed
algorithm is given for synchronizing a system of logical
clocks which can be used to totally order the events,
The use of the total ordering is illustrated with a
method for solving !mhwlulb- problems. The
algorithm is then ialized ical
clwlu.lmllbnmﬂlnkriwdouluv-hrmd
synchrony the clocks can become.

Key Words and Phrases: distributed systems,

rks, clock hronizath i

systems)

CR Categories: 4.32, 5.29

Introduction

The concept of time is fundamental o our way of
thinking. It is derived from the more basic concept of
the order in which events occur. We say that something
happened at 315 if it occurred after our clock read 3:15
and before it read 3:16. The concept of the temporal
ordening of events pervades our thinking about systems.
For example, in an airline reservation system we specify
that a request for a reservation should be granted if it is
made hefore the Might is filled. However, we will see that
this concept must be carefully reexamined when consid-
ering events in a distributed system.

Creneral permissson (o make far use in teaching or research of all
o part of this material i mted o ndividual resders and 1o nonprofit
libraries acting for them provided thai ACM's copyright notice is given
and that reference i made 10 the publication, to its date of e, and
10 the fact that reprinting privileges were granted by permission of the
Assocuation for Computing Machinery. To olherwise reprnt a ligure.
table. other substantaal excerpt, or the entire work requires specific

as does republ . o ar multiple reproduc-

tion
This work was supported by the Advanced Research Projects
Agency of the Department of Defense and Rome Air Development
Center. I was d by Rome Awr e Center under
contract mumber F 30602 T6-C 0004,
Author's address: Computer Science Laboratory, SRI Interna-
tional, 133 Ravenswood Ave . Menbo Park CA 94023
© 1978 ACM 0001 -0782/T8/0T00-0558 $00.75

LLLY

The Semantic Elegance of Applicative Languages

D. A. Turner

University of Kent at Canterbury

Ad
procesy
munica
networ
net, is
be view
control
channd In what does the alleged superiority of
¥
f the o applicative languages consist? In the
1 last analysis the answer must be in termy
pared of the reduction in the time required to
Wel produce a correct program to solve a giw
,P,;.',ﬂ problem. On reflection I decided that
remark the best way to demonstrate this would b
tiproce! to take some reasonably non-trivial
Iproc problem and show how, by proceeding with
lems si a certain kind of applicative language
the un) framework it was possible to develop a
occur, working solution with a fraction of the
In effort that would have been necessary in
say tha a conventional imperative language.]
. ¥ particular problem I have chosen also
happg brings out a number of general points of
of the ¢ interest which I shall discuss briefly
often a afterwards.
and its
In Before proceeding it will be necessary
h for me to quickly outline the language
by the framowork within which we shall be work-
algoritl ing. Very briefly it can be summarised
of all as (non-strict, higher order) recursion
mechai equations + set abstraction. Obviously
ilustra what matters are the underlying semantic
hroni concepts, not the particular syntax that
chroni is used to express them, but for the
or can| sake of definiteness I shall use the
differs notation of KRC (= "Kent Recursive
avoided Calculator®™), an applicative programming
a simpy system implemented at the University of
deri Kent [Turner Bl]. KRC is fairly
Tive | closely based on the earlier language
can dri SASL, [Turner 76), but I have added a
facility for set abstraction.
The Py
Mo
happen
time th
of phy Permission to copy without fee all or part of this maseria s gran
meet o provided that the copies are not made or distributed for direct
must b commercial advantage, the ACM copyright notice and the title of
publication and it date appear, and notice is ;Mn that copying
system of the A for C: Y. To copy
then |.'h m- of 10 republish, requires a hlnd;ot .p“-u‘.;
contain
clocks
hysic “ .
sl © 1981 ACM 0-59761-060-5/81-10/0085 $00.75
We|
assumel
procesy
Depen:
by T T TCTTETIT T
of a :m;k h could be one
Communications July 1978
ol Volume 21
the ACM Number 7

1977 ACM Turing Award Lecture

The 1977 ACM Turing Award was presented 10 John Backus
a1 the ACM Annual Conference in Seattle, October 17, In intro-
ducing the recipient, Jean E. Sammet, Chairman of the Awards
Committee, made the following comments and read a portion of
the final citation. The full announcement is in the Seplember
1977 issue of Communications, page 681,

“Probably there is nobody in the room who has not heard of
Fortran and most of you have probably used it st least once, or ot
least looked over the shoulder of someone who was writing a Far.
tran program. There are probably almost as many people who
have heard the letters BNF but don't necessarily know what they
stand for. Well, the B is for Backus, and the other letiers are
explained in the formal citation. These 1wo contributions, in my
opinion, are among the half dozen most important technical
contributions to the computer feld and both were made by John
Backus (which in the Foriran case also involved some col-
leaguses). It is for these contributions that he is receiving this
year's Turing award.

The short form of his citation lound, influential.
and lasting contributions to the design of practical high-level
programmirg systems, notably through his work on Fortran, and
for seminal publication of formal procedures for the specifica-
tions of programming languages.”

'llu most significant part of the full citation is as follows:

. Backus headed a small IBM group in New York City
dnrln. Ihe arly 1930s. The earliest product of this group's
efforts was a high-level language for scientific and techaical com-

putations called Fortran, This same group designed the first
system 1o translate Fortran programs into machine language.
They employed movel optimiring techniques to generate fast
machine-language programs. Many other compilers for the lan-
guage were developed, first on [BM machings, and L wirtu-
ally every make of computer. Fortran was adopted as a US
matbonal standard in 1966,

During the latter part of the 1950s, Backus served on the
i which devel Algol 38 and a later
version, Algol 60. The language Algol, and its derivative com-
pilers, received broad acceptance in Europe as & means for de-
veloping programs and as a formal means of publishing the
algorithms on which the programs are based

In 1959, Backus presented a paper st the UNESCO confer-
ence in Paris on the syntax and semantics of a proposed inter-
mational algebraic language. In this paper, he was the first to
employ a formal technique for specifying the syntax of program-
mang languages. The formal notation became n as BNF-
sanding for “Backus Normal Form,” or “Backus Naur Form™ to
recognize the further contributions by Peter Naur of Denmark.

Thus, Backus has contributed strongly both to the pragmatic
world of probl Iving on and 1o the
world existing a2 the interface between artificial languages and
computational laguistics, Fortran remains ome of the most
widely used programming languages in the world. Almost all
programming languages are now described with some type of
formal svatactic definition.’ *

Can Programming Be Liberated from the von
Neumann Style? A Functional Style and Its

Algebra of Programs

John Backus
IBM Research Laboratory, San Jose

ummmmmr.:mmwhqamaﬁ
or part of th
wwmthW1hlAﬁanm W
and that reference i made 10 the publication. 1o its date of isuse, and
b ihe fact that repristing were gramed by permassion of the
Amaciation for Computing Max! . To otherwise reprini & figure,
table. ciber substantial excerpt, of the entite work requires specific
permassion as doss repablication, of symemstc of multiple reproduc-
tios.
- Author's address 91 Saint Germain Ave, San Francisco, CA
1
© 1978 ACM 00010782,/ TH,0800-061 $00.73

&1y

[& are growing
ever more enormous, bul not stronger. Inherent defects
at the most basic level cause them to be both fat and
weak: their primitive word-at-a-time style of program-
ming inherited from their common ancestor—the von
Neumann computer, their close coupling of semantics 1o
state transitions, their division of into &
world of expressions and & world of statements, their
inability to effectively use powerful combining forms for
building new programs from existing ones, and their lack.
of useful mathematical properties for reasoning about
programs,

An al fve i I style of Is
founded on the wse of combining forms for creating

Functional deal with d

data, are often noarepetitive and noarccursive, are hier-
archically constructed, do not name their arguments, and
do not rqiothm-ﬂu—cﬂun nl'prm

o become
lmtnmﬂﬂhdmnnluﬂdnﬂm
level ones in a style not possible in conventional lan-
Buages.

Communications August 1978
af Volume 21
the ACM Number &

MASTER THESIS PROJECT PROPOSAL

Contract support in automatic testing of
Java code

Relevant completed courses:

1977 ACM Toring Award Lecvare [E) Wadler's Blog X

<« (& | (© wadlerblogspot.se

Appar 9 ICFP 2017

ot e
o, Wl he 8 i o B, el e s

Can Programming P i
Neumann Style? 2
" =a of Prog

About Me

12.7.17

Today's the day: Fight for
Net Neutrality

e von
compater, thaie chone coupling of semantics o
o progsameiag inte &
n . -
view my
"
complete
et rofil
. profile
g
Atom feed for Klicka for att aktivera Adobe Flash Player
———y— 5
bt “ F|-JS blog
s e g 1978 Wadler's home
F. fre =1 e

YT STve T

Presenter
Presentation Notes
What’s the difference between a paper and a blog entry? Peer review!

How we refer to a paper

J. Hughes, Why functional
programming matters, The Computer
Journal 32 (2) (1989) 98-107.

K. Claessen and J. Hughes. QuickCheck:
A Lightweight Tool for Random Testing

of Haskell Programs. In Proceedings of
ICFP’2000, 2000.

How we refer to a paper

Authors
J. Hughes, Why functional

programming matters, The Computer
Journal 32 (2) (1989) 98-107.

K. Claessen and J. Hughes. QuickCheck:
A Lightweight Tool for Random Testing
of Haskell Programs. In Proceedings of
ICFP’2000, 2000.

How we refer to a paper

Authors
J. Hughes, Why functional

programming matters, The Computer Year of

Journal 32 (2) (1989) 98—-107. : :
12) {1989) publication

K. Claessen and J. Hughes. QuickCheck:
A Lightweight Tool for Random Testing

of Haskell Programs. In Proceedings of
ICFP’2000, 2000.

How we refer to a paper

"Hughes (1989)”

J. Hughes, Why functional
programming matters, The Computer
Journal 32 (2) (1989) 98-107.

”Claessen and
K. Claessen and J. Hughes. QuickCheck: FUENES AV
A Lightweight Tool for Random Testing
of Haskell Programs. In Proceedings of
ICFP’2000, 2000.

How we refer to a paper

J. Hughes, Why functional Paper title

programming matters, The Computer
Journal 32 (2) (1989) 98-107.

K. Claessen and J. Hughes. QuickCheck:
A Lightweight Tool for Random Testing

of Haskell Programs. In Proceedings of
ICFP’2000, 2000.

How we refer to a paper

J. Hughes, Why functional Paper title

programming matters, The Computer o

Journal 32 (2) (1989) 98-107. Publication
venue

K. Claessen and J. Hughes. QuickCheck:
A Lightweight Tool for Random Testing

of Haskell Programs. In Proceedings of
ICFP’2000, 2000.

I i\ International Conference on Functional
Programming

How we refer to a paper

J. Hughes, Why functional
programming matters, The Computer

Journal 32(2) (1989) 98-107.

K. Claessen and J. Hughes. QuickCheck:
A Lightweight Tool for Random Testing

of Haskell Programs. In PrOCEEdingS
of ICFP’2000, 2000.

ICFP'13

P o o vy i AU T by

| | i
TR AT VAT TN T T
1.8 1 TR

Presenter
Presentation Notes
Both forms are digital only nowadays!
In other sciences, conference papers are often only a few pages, and almost all are accepted. Journals are the prestigious venues.

Types of publication venue

________ Workshops | Conferences Journals __

Presenter
Presentation Notes
Oddly enough, even though it’s normally a huge no-no to publish the same paper twice, it IS considered ok to republish a conference article as a journal article.

Types of publication venue

_______ Workshops | Conferences Journals __

Page limit 6—10 pages 12—30 pages unlimited

Presenter
Presentation Notes
Oddly enough, even though it’s normally a huge no-no to publish the same paper twice, it IS considered ok to republish a conference article as a journal article.

Types of publication venue

_______ Workshops | Conferences Journals __

Page limit 6—10 pages 12—30 pages unlimited

Acceptance >=50% 10—30% >=50%
rate

Presenter
Presentation Notes
Oddly enough, even though it’s normally a huge no-no to publish the same paper twice, it IS considered ok to republish a conference article as a journal article.

Types of publication venue

_______ Workshops | Conferences Journals __

Page limit 6—10 pages 12—30 pages unlimited
Acceptance >=50% 10—30% >=50%
rate

Time from 3 months 6 months years

submission to
publication

Presenter
Presentation Notes
Oddly enough, even though it’s normally a huge no-no to publish the same paper twice, it IS considered ok to republish a conference article as a journal article.

Types of publication venue

_______ Workshops | Conferences Journals __

Page limit 6—10 pages 12—30 pages unlimited
Acceptance >=50% 10—30% >=50%
rate

Time from 3 months 6 months years
submission to f o

publication N 4

30%
new

©

Presenter
Presentation Notes
Oddly enough, even though it’s normally a huge no-no to publish the same paper twice, it IS considered ok to republish a conference article as a journal article.

Conference
page limit

| 1
0 TR T
A 200N TR

[

A
L. M T
Hl““‘l 1 i

i
[

b

Presenter
Presentation Notes
Find papers with the same title in conference and journal! But not the same paper?

e The authors The authors
have carefully included every
selected the possible detail
most important e Bestif you plan
material to build on this

e Bestto work and need
understand the complete
main points knowledge

Presenter
Presentation Notes
Find papers with the same title in conference and journal! But not the same paper?

|l)

"Direct to Journa

e Sometimes people just do that
e Paper needs to be longer than conference format
e Paper contains nothing new

Explain existing Surveys an Integrates several

results in a new entire area conference papers
way into a coherent whole

Presenter
Presentation Notes
”Direct to TV” not a good sign for a film, but better for journals.
Tutorial papers, survey papers, integration papers.

How do we find a paper?

f’ m Google Scholar x \
-

Google
”scholar”

j « > | @ Sizker | hitpsy/scholar.goaglese

i Appar 2 ICFP2017

Google Scholar
! el

Rekommenderade artiklar

Checking Response-Time Properties of Web-Service Applications Under Stochastic
User Profiles
R Schumi, P Lang, BK Aichernig, W Krenn, R Schlick - IFIP International Conference .. 2017

From Temporal Models to Property-Based Testing
N Alzahrani, M Spichkova, JO Blech - arXiv preprint arXiv:1705.10032, 2017

Visa alla rekommendationer

Sta pa giganters axlar

Google Scholar in English

How do we find a paper?

] Search for authors

f m john hughes why functic X \
-

j « > C ‘ @ Szker | https://scholar.googlese/scholar?hl=svéas_sdt a nd (pa rt Of) title

3! Appar 0 ICFP 2017

= john hughes why functional programming E
F # Scholar AR~ = N
Sources
Why functional programming matters [PDF] oup.com
J Hughes - The computer journal, 1989 - academic.oup.com Full-Text@Chalmers fO r th e

Abstract As software becomes more and more complex, it is more and more important to
structure it well. Well-structured software is easy to write, easy to debug, and provides a
collection of modules that can be re-used to reduce future programming costs. Conventional
languages place conceptual limits on the way problems can be modularised. Functional
languages push those limits back. In this paper we show that two features of functional ...

7 Y9 Citeratav 1112 Relaterade artiklar Alla 76 versionerna $9

paper

Visar det basta resultatet for denna sékning. Visa alla resultat

Hjalp Sekretess Villkor

How do we find a paper?

| e - |
[Chalmers Library Link Re X [320098.pdf ®

<« C | & Siker

5 Appar 9 ICFP 2017

https://oup.silverchair-cdn.com/oup/backfile/Content_public/Journal/comjnl/32/2/10.1... 3¢

PDF

I HUGHES

Department of Computing Science, University of Glasgow, Glasgow G2 5QQ

As safiware becomes more and more complex, it is more and more important to structure it well. Well-structured
software is easy to write, easy to debug, and provides a collection of modules that can be re-used to reduce future
pragramming costs. Conventional languages place conceptual limits on the way problems can be modularised.
Functional languages push those limirs back. In this paper we show that two features of functional languages in
particular, kigher-order functions and lazy evaluation, can contribute greatly to modularity. As examiples, we
manipulate lists and trees, program several numerical algorithms, and implement the alpha-beta hewristic {an Artificial
Intelligence algovithm used in game-playing programs). Since modularity is the key to successful programming,

functional languages are vitally important to the real world.

Received November 1958

1. INTRODUCTION

This paper is an attempt to convince the ‘real world”
that functional programming is vitally important, and
also to help functional programmers exploit its advant-
ages to the full by clarifying what those advantages
are.

Functional programming is so called because a
program consists entirely of functions. The main program
itself is written as a function which receives the program’s
input as its argument and delivers the program’s output

that it will make him virtuous. To those more interested
in material gains, these *advantages’ are not convincing.

Functional programmers argue that there are great
material benefits — that a functional programmer is an
order of magnitude more productive than his conven-
tional counterpart, because functional programs are an
order of magnitude shorter. Yet why should this be? The
only faintly plausible reason one can suggest on the basis
of these ‘advantages’ is that conventional programs
consist of 90 % assignment statements, and in functional
programs these can be omitted ! This is plainly ridiculous.

ag ite recult Tumicalls Thnrmel'n functinn ic dafined in

If_amitting s-l::io'r||rna-n| gtatements _hroueht such _enor-

How do we find a paper?

e Full-Text@Chalmers

* Free access to many scientific publishers
e Accessible from within the Chalmers network (including
VPN)
 Digital libraries
 ACM digital library, IEEE digital library, etc
e (may require payment)

e Author’s home page
e Can often find a PDF by Googling
e May not be the "official” published version

Readers like Authors like

Open Access it! it

e Publishers make articles free to download for anyone

The reader is the customer The author is the customer
Succeed by publishing a Succeed by publishing very
quality product many papers

Presenter
Presentation Notes
Old saying: ”follow the money” (from documentary about the Watergate scandal). This has resulted in a plethora of ”spam” journals and conferences that nobody reads.

ABSTRACT

Many phisicists would agree that, had 1t not been for

congestion control. the evaluation of web browsers might never
have occwrred. In fact, few hackers worldunde would disagree

with the essental uwmficaton of voice-over-IP and public-
prvate key pawr. In order to solve this nddle. we confirm that
SMPs can be made stochashe, cacheable, and interposable.

Generate your own fake
paper at
https://pdos.csail.mit.edu
[archive/scigen iy S

d . 15 1mpossible; our application
b different. This niaves r not actually hold in reality.
71t e B consider an application consisting of n aceess points.
P in 17 e C inly, the lext, the model for our heunistic consists of fouwr independent
= type of solution Wever, is that compilers components: simulated amnealing, active networks, flexible
zes are mostly incompanble. Despite the fact that moedahties, and the study of reinforcement learning.
5 methodologies visualize XML, we suwmount this issue We consider an algomthm consisting of n semaphores.
without synthesizng distnbuted archetypes. Any unproven synthesiz of introspective methodologies will

Presenter
Presentation Notes
Randomly generated paper submitted by MIT students. (SCIgen).
The URL also lists venues that have accepted SCIGen papers!
One conf series organised by hotel marketing manager in Florida. Hotel gets business, authors get ”publications” and a trip paid by employer—everybody wins! Except science, and the employer.

Citations

results in higher-order functions. This insight has been described more

Hughes makes a slightly different but appropriately by Hughes, Thompson,
equally compelling argument in and surely others [19,33].

Hughes [1984] where he emphasizes
the importance of

References

REFERENCES
AASA, A., HOLMSTROM, S., AND
NILSSON, C. 1987. An efficiency
comparison of some

[1] L. Augusteijn, Sorting morphisms,
in: S. Swierstra, P. Henriques, J.
Oliveira (Eds.), ...

[19] J. Hughes, Why functional
programming matters, The Computer
Journal 32 (2) (1989) 98-107.

HUGHES, J. 1984. Why functional
programming matters. Tech. Rep. 16.
Programming Methodology Group,
Chalmers University of Technology.

This looks like

Citation graph an important
paper

Investigating a topic

1

ot

The papers
that cite this
one

Cited by 1112
other papers

(3] — O *
ml—ughes: Why functional X
&« C | @ Saker | https//scholar.googlese/scholar?cites=1662342056876... B | @
15 Appar 9 ICFP 2017
& Scholar Ungefar 1 112 resultat (0,25 sek.) AR = &

VWhy functional programming matters

Sk i artiklar dar verket citeras

(eok] Structure and interpretation of computer programs [HTML] google.com
H Abelson, GJ Sussman, J Sussman - 1996 - books.google.com

21.21.31.1.8 Procedures and the Processes Cey Generate 1.2.1
Procedures as Black-Box Abstractions .. Linear Recursion and lteration
_ . 122 Tree Recursion 1.2.3 Orders of Growth

.. 124 Exponentiation
¢ YY Citeratav 2825 Relaterade artiklar Alla 119 versionema 9

ieok] Modern compiler implementation in C [PDF] ufms.br

AW Appel - 2004 - books google com

This new, expanded textbook describes all phases of a modern compiler: lexical
analysis, parsing, abstract syntax, semantic actions, intermediate representations,
instruction selection via tree matching, dataflow analysis, graph-coloring register
allocation, and

¥r UY Citeratav 1723 Relaterade artiklar Alla 26 versionerna $%

isok] ML for the Working Programmer

LC Paulson - 1996 - books.google.com

The new edition of this successful and established textbook retains its two original
intentions of explaining how to program in the ML language, and teaching the
fundamentals of functional programming. The major change is the early and
prominent coverage of modules.

bl

Follow references to

Citation grap h understand the history

of an idea

Use Google Scholar’s
reverse citations to

C|tat|0 N gra p h understand the impact of

an idea

What else did the author do?

4 John Hughes - Google

C & Saker | https;//scholar.googlese/

ICFP 2017 M The Computer Scien

= Google Scholar Q

John Hughes

Professor of Computer Science and Engineering,
Chalmers University
Verifierad e-postadress pa chalmers. se

U

0

u

B -

ARTIKLAR CITERAS AV ~ MEDFORFATTARE

. TITEL CITERAS AV AR
Automatic Grading of Programming Exercises using Property-Based 2 2018
Testing

a C Benac Earle, LA Fredlund, J Hughes
Proceedings of the 2016 ACM Conference on Innovation and Technology in ...

Find more bugs with QuickCheckl 6 2016
1 J Hughes, U Norell, N Smallbone, T Arts
Proceedings of the 11th International Workshop on Automation of Software ..

51 How well are your requirements tested? 2 2016
T Arts, J Hughes A

What makes a paper highly cited?

 An important, widely used result or method
* Inspired many others

e A good introduction to a topic

e A good survey of an area

e Easy to read and understand

e Old

* In a popular area

Why do authors cite?

* Present paper builds directly on a previous one

e Older paper solves a similar problem in a different
way

* To show the author is aware of standard works in
the field

e Survey articles are invaluable!
e To cite author’s own previous work
* To cite reviewers’ own previous work

Scholarship

\

Often, the original papers on a topic give much better
explanations, because that is their main raison d’étre

How to read a paper

(S. Keshav. 2007. How to read a\

1. A quick scan
; paper. SIGCOMM Comput.

o . . ?
What is it about: | Commun. Rev. 37, 3 (July 2007),
e Do | want to read it? 83-84

e 5—10 minutes ? J

2. Read

e Skip some details—proofs etc
e 1 hour

3. Reconstruct
 Make sure you understand every detail
e 4—5 hours

Read Keshav (2007) first!
Your Task \2007)

* Find an important CS paper to study
e >=100 citations

e Read it thoroughly

e Find and read at least one important previous
paper (from list of references)

* Find and read at least one important successor
paper
e Become an expert in the topic of your main paper
e You’ll be explaining it to the rest of us!

	The Scientific Literature
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	How we refer to a paper
	How we refer to a paper
	How we refer to a paper
	How we refer to a paper
	How we refer to a paper
	How we refer to a paper
	How we refer to a paper
	Slide Number 16
	Types of publication venue
	Types of publication venue
	Types of publication venue
	Types of publication venue
	Types of publication venue
	Slide Number 22
	Slide Number 23
	”Direct to Journal”
	How do we find a paper?
	How do we find a paper?
	How do we find a paper?
	How do we find a paper?
	Open Access
	World Multi-Conference on Systemics, Cybernetics and Informatics 2005
	Citations
	Citation graph
	Investigating a topic
	Citation graph
	Citation graph
	What else did the author do?
	What makes a paper highly cited?
	Why do authors cite?
	Scholarship
	How to read a paper
	Your Task

