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The concept of one event happening before another
inad d system Is ined, and is shown to
define a partial ordering of the events, A distributed
algorithm is given for synchronizing a system of logical
clocks which can be used to totally order the events,
The use of the total ordering is illustrated with a
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Introduction

The concept of time is fundamental o our way of
thinking. It is derived from the more basic concept of
the order in which events occur. We say that something
happened at 315 if it occurred after our clock read 3:15
and before it read 3:16. The concept of the temporal
ordening of events pervades our thinking about systems.
For example, in an airline reservation system we specify
that a request for a reservation should be granted if it is
made hefore the Might is filled. However, we will see that
this concept must be carefully reexamined when consid-
ering events in a distributed system.
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The Semantic Elegance of Applicative Languages

D. A. Turner

University of Kent at Canterbury
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f the o applicative languages consist? In the
1 last analysis the answer must be in termy
pared of the reduction in the time required to
Wel produce a correct program to solve a giw
,P,;.',ﬂ problem. On reflection I decided that
remark the best way to demonstrate this would b
tiproce! to take some reasonably non-trivial
Iproc problem and show how, by proceeding with
lems si a certain kind of applicative language
the un) framework it was possible to develop a
occur, working solution with a fraction of the
In effort that would have been necessary in
say tha a conventional imperative language. ]
. ¥ particular problem I have chosen also
happg brings out a number of general points of
of the ¢ interest which I shall discuss briefly
often a afterwards.
and its
In Before proceeding it will be necessary
h for me to quickly outline the language
by the framowork within which we shall be work-
algoritl ing. Very briefly it can be summarised
of all as (non-strict, higher order) recursion
mechai equations + set abstraction. Obviously
ilustra what matters are the underlying semantic
hroni concepts, not the particular syntax that
chroni is used to express them, but for the
or can| sake of definiteness I shall use the
differs notation of KRC (= "Kent Recursive
avoided Calculator®™), an applicative programming
a simpy system implemented at the University of
deri Kent [Turner Bl]. KRC is fairly
Tive | closely based on the earlier language
can dri SASL, [Turner 76), but I have added a
facility for set abstraction.
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1977 ACM Turing Award Lecture

The 1977 ACM Turing Award was presented 10 John Backus
a1 the ACM Annual Conference in Seattle, October 17, In intro-
ducing the recipient, Jean E. Sammet, Chairman of the Awards
Committee, made the following comments and read a portion of
the final citation. The full announcement is in the Seplember
1977 issue of Communications, page 681,

“Probably there is nobody in the room who has not heard of
Fortran and most of you have probably used it st least once, or ot
least looked over the shoulder of someone who was writing a Far.
tran program. There are probably almost as many people who
have heard the letters BNF but don't necessarily know what they
stand for. Well, the B is for Backus, and the other letiers are
explained in the formal citation. These 1wo contributions, in my
opinion, are among the half dozen most important technical
contributions to the computer feld and both were made by John
Backus (which in the Foriran case also involved some col-
leaguses). It is for these contributions that he is receiving this
year's Turing award.

The short form of his citation lound, influential.
and lasting contributions to the design of practical high-level
programmirg systems, notably through his work on Fortran, and
for seminal publication of formal procedures for the specifica-
tions of programming languages.”

'llu most significant part of the full citation is as follows:

. Backus headed a small IBM group in New York City
dnrln. Ihe arly 1930s. The earliest product of this group's
efforts was a high-level language for scientific and techaical com-

putations called Fortran, This same group designed the first
system 1o translate Fortran programs into machine language.
They employed movel optimiring techniques to generate fast
machine-language programs. Many other compilers for the lan-
guage were developed, first on [BM machings, and L wirtu-
ally every make of computer. Fortran was adopted as a US
matbonal standard in 1966,

During the latter part of the 1950s, Backus served on the
i which devel Algol 38 and a later
version, Algol 60. The language Algol, and its derivative com-
pilers, received broad acceptance in Europe as & means for de-
veloping programs and as a formal means of publishing the
algorithms on which the programs are based

In 1959, Backus presented a paper st the UNESCO confer-
ence in Paris on the syntax and semantics of a proposed inter-
mational algebraic language. In this paper, he was the first to
employ a formal technique for specifying the syntax of program-
mang languages. The formal notation became n as BNF-
sanding for “Backus Normal Form,” or “Backus Naur Form™ to
recognize the further contributions by Peter Naur of Denmark.

Thus, Backus has contributed strongly both to the pragmatic
world of probl Iving on and 1o the
world existing a2 the interface between artificial languages and
computational laguistics, Fortran remains ome of the most
widely used programming languages in the world. Almost all
programming languages are now described with some type of
formal svatactic definition.’ *

Can Programming Be Liberated from the von
Neumann Style? A Functional Style and Its

Algebra of Programs

John Backus
IBM Research Laboratory, San Jose
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[& are growing
ever more enormous, bul not stronger. Inherent defects
at the most basic level cause them to be both fat and
weak: their primitive word-at-a-time style of program-
ming inherited from their common ancestor—the von
Neumann computer, their close coupling of semantics 1o
state transitions, their division of into &
world of expressions and & world of statements, their
inability to effectively use powerful combining forms for
building new programs from existing ones, and their lack.
of useful mathematical properties for reasoning about
programs,

An al fve i I style of Is
founded on the wse of combining forms for creating

Functional deal with d

data, are often noarepetitive and noarccursive, are hier-
archically constructed, do not name their arguments, and
do not rqiothm-ﬂu—cﬂun nl'prm

o become
lmtnmﬂﬂhdmnnluﬂdnﬂm
level ones in a style not possible in conventional lan-
Buages.
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I HUGHES

Department of Computing Science, University of Glasgow, Glasgow G2 5QQ

As safiware becomes more and more complex, it is more and more important to structure it well. Well-structured
software is easy to write, easy to debug, and provides a collection of modules that can be re-used to reduce future
pragramming costs. Conventional languages place conceptual limits on the way problems can be modularised.
Functional languages push those limirs back. In this paper we show that two features of functional languages in
particular, kigher-order functions and lazy evaluation, can contribute greatly to modularity. As examiples, we
manipulate lists and trees, program several numerical algorithms, and implement the alpha-beta hewristic {an Artificial
Intelligence algovithm used in game-playing programs). Since modularity is the key to successful programming,

functional languages are vitally important to the real world.

Received November 1958

1. INTRODUCTION

This paper is an attempt to convince the ‘real world”
that functional programming is vitally important, and
also to help functional programmers exploit its advant-
ages to the full by clarifying what those advantages
are.

Functional programming is so called because a
program consists entirely of functions. The main program
itself is written as a function which receives the program’s
input as its argument and delivers the program’s output

that it will make him virtuous. To those more interested
in material gains, these *advantages’ are not convincing.

Functional programmers argue that there are great
material benefits — that a functional programmer is an
order of magnitude more productive than his conven-
tional counterpart, because functional programs are an
order of magnitude shorter. Yet why should this be? The
only faintly plausible reason one can suggest on the basis
of these ‘advantages’ is that conventional programs
consist of 90 % assignment statements, and in functional
programs these can be omitted ! This is plainly ridiculous.
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