
A Brief History Of Time
In Riak

Time in Riak

✴Logical Time

✴Logical Clocks

✴ Implementation details

Mind the Gap
How a venerable, established,
simple data structure/algorithm

was botched multiple times.

Order of Events

✴Dynamo And Riak

✴Temporal and Logical Time

✴Logical Clocks of Riak Past

✴Now

Why Riak?

Scale Up

$$$Big Iron
(still fails)

Scale Out

Commodity Servers
CDNs, App servers

DATABASES!!

Fundamental Trade Off

• Lipton/Sandberg ’88	

• Attiya/Welch ’94	

• Gilbert/Lynch ’02

Low Latency/Availability:
- Increased Revenue
- User Engagement

Strong Consistency:!
- Easier for Programmers

- Less user “surprise”

Consistency
There must exist a total order on all operations

such that each operation looks as if it were completed
at a single instant. This is equivalent to requiring requests of

the distributed shared memory to act as if they were
executing on a single node, responding to
operations one at a time.	

!

--Gilbert & Lynch

Consistency
One important property of an atomic read/write shared memory is that

any read operation that begins after a
write operation completes must return
that value, or the result of a later write
operation. This is the consistency guarantee that generally provides

the easiest model for users to understand,
and is most convenient for those attempting to design a client application
that uses the distributed service	

!

--Gilbert & Lynch

https://aphyr.com/posts/313-strong-consistency-models

Replica A Replica B Replica C

Client X Client Y

PUT “sue”PUT “bob”

NO!!!! :(

Consistent

Availability
Any non-failing node can respond to any

request!
!

--Gilbert & Lynch

Replica A Replica B Replica C

Client X Client Y

PUT “sue”PUT “bob”

NO!!!! :(

Consistent

Consensus for a total
order of events

Requires a quorum

Coordination waits

Replica A Replica B Replica C

Client X Client Y

PUT “sue”PUT “bob”

Consistent

Client X put “BOB”

Client Y put “SUE”

Events put in a TOTAL ORDER

https://aphyr.com/posts/313-strong-consistency-models

Eventual Consistency

Eventual consistency is a consistency model used in distributed
computing that informally guarantees that, if no new updates are
made to a given data item, eventually all accesses to that item
will return the last updated value. !
!
--Wikipedia!

Replica A Replica B Replica C

Client X Client Y

PUT “sue”

C’

PUT “bob”

A’ B’

Available

Availability
When serving reads and writes matters
more than consistency of data. Deferred
consistency.

Fault Tolerance

Low Latency

Low Latency

 Amazon found every 100ms of latency cost them 1% in sales.

Low Latency

Google found an extra 0.5 seconds in search page generation time
dropped traffic by 20%.

Replica A Replica B Replica C

Client X Client Y

PUT “sue”

C’

PUT “bob”

A’ B’

Available

Optimistic replication

No coordination -
lower latency

Replica A Replica B Replica C

Client X Client Y

PUT “sue”PUT “bob”

Low Latency

[c1] “sue”

[c1] “sue”[a1] “bob”

How Do We Order
Updates?

–Google Book Search p.148 “The Giant Anthology of Science Fiction”,
edited by Leo Margulies and Oscar Jerome Friend, 1954

"'Time,' he said, 'is what keeps
everything from happening at once.'"

Temporal Clocks
posix time number line

 Thursday,
1 January 1970

0 129880800 1394382600

Now-ishMy Birthday

Light Cone!
By SVG version: K. Aainsqatsi at en.wikipediaOriginal PNG version: Stib at

en.wikipedia - Transferred from en.wikipedia to Commons.(Original text: self-made),
CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=2210907

https://commons.wikimedia.org/w/index.php?curid=2210907

Physics Problem

4,148 km
14 ms Light
21 ms fibre

SF NY

PUT “bob”
1394382600000

PUT “sue”
1394382600020

temporal clocks
✴CAN

• A could NOT have caused B

• A could have caused B

✴CAN’T

• A caused B

Dynamo
The Shopping Cart

1 CLIENT

2 REPLICAS

1 KEY

Optimistic replication

No coordination -
lower latency

GET
PUT

UPDATE

REPLICATE

PUT
PUT

Quorum

GET

A

PUT

A

GET

B

PUT

B

TEMPORAL TIME

>155196119890 155196118001

Timestamp - total order

⨆

Logical clock - partial order

Clocks, Time, And the Ordering of
Events

• Logical Time
• Causality
• A influenced B
• A and B happened at the same

time
• Per-process clocks, only tick when

something happens
Leslie Lamport http://dl.acm.org/citation.cfm?id=359563

http://dl.acm.org/citation.cfm?id=359563

Detection of Mutual
Inconsistency in

Distributed Systems

Version Vectors - updates to a data item

http://zoo.cs.yale.edu/classes/cs426/2013/bib/
parker83detection.pdf

Version Vectors or
Vector Clocks?

http://haslab.wordpress.com/2011/07/08/version-vectors-are-
not-vector-clocks/

version vectors - updates to a data
item

http://haslab.wordpress.com/2011/07/08/version-vectors-are-not-vector-clocks/

Summary

• Distributed systems exist (scale out)

• There is a trade off (Consistency/Availability)

• To decide on a value we need to “order” updates

• Temporal time is inadequate

• Logical time can help

Version Vectors

A CB

Version Vectors

A CB

{a, 1}

{b, 1}

{c, 1}
{a, 2}

[]{a, 2}, {b, 1}, {c, 1}

Version Vectors

A CB

{a, 1}

{b, 1}

{c, 1}
{a, 2}

[]{a, 2}, {b, 1}, {c, 1}

Version Vectors

A CB

{a, 1} {b, 1} {c, 1}

{a, 2}

[]{a, 2}, {b, 1}, {c, 1}

Version Vectors

A CB

{a, 1} {b, 1} {c, 1}

{a, 2}

[]{a, 2}, {b, 1}, {c, 1}

Version Vectors

A CB

{a, 1} {b, 1} {c, 1}

{a, 2}

[]{a, 2}, {b, 1}, {c, 1}

Version Vectors

[{a,2}, {b,1}, {c,1}]

Version Vectors
Update

[{a,2}, {b,1}, {c,1}]

Version Vectors
Update

[{a,2}, {b,2}, {c,1}]

Version Vectors
Update

[{a,2}, {b,3}, {c,1}]

Version Vectors
Update

[{a,2}, {b,3}, {c,2}]

Version Vectors
Descends

✴A descends B : A >= B

✴A has seen all that B has

✴A summarises at least the same history as B

Version Vectors
Descends

[{a,2}, {b,3}, {c,2}] [{a,2}, {b,3}, {c,2}]

[{a,2}, {b,3}, {c,2}] []

>=
[{a,4}, {b,3}, {c,2}] [{a,2}, {b,3}, {c,2}]

Version Vectors
Dominates

✴A dominates B : A > B

✴A has seen all that B has, and at least one more
event

✴A summarises a greater history than B

Version Vectors
Dominates

[{a,1}] []

>
[{a,4}, {b,3}, {c,2}] [{a,2}, {b,3}, {c,2}]

[{a,5}, {b,3}, {c,5}, {d, 1}] [{a,2}, {b,3}, {c,2}]

Version Vectors
Concurrent

✴A concurrent with B : A | B

✴A does not descend B AND B does not descend A

✴A and B summarise disjoint events

✴A contains events unseen by B AND B contains
events unseen by A

Version Vectors
Concurrent

[{a,1}] [{b,1}]

|
[{a,4}, {b,3}, {c,2}] [{a,2}, {b,4}, {c,2}]

[{a,5}, {b,3}, {c,5}, {d, 1}] [{a,2}, {b,4}, {c,2}, {e,1}]

happens before

concurrent  ——— divergent

convergent

Logical Clocks

Version Vectors
Merge

✴A merge with B : A ⊔ B

✴A ⊔ B = C

✴C >= A and C >= B

✴ If A | B C > A and C > B

✴C summarises all events in A and B

✴Pairwise max of counters in A and B

Version Vectors
Merge

[{a,1}] [{b,1}]

⊔
[{a,4}, {b,3}, {c,2}] [{a,2}, {b,4}, {c,2}]

[{a,5}, {b,3}, {c,5}, {d, 1}] [{a,2}, {b,4}, {c,2}, {e,1}]

Version Vectors
Merge

[{a,1}{b,2}]

[{a,4}, {b,4}, {c,2}]

[{a,5}, {b,3}, {c,5}, {d, 1},{e,1}]

Syntactic Merging

✴Discarding “seen” information

✴Retaining concurrent values

✴Merging divergent clocks

Temporal vs
Logical

[{a,4}, {b,3}, {c,2}]

[{a,2}, {b,3}, {c,2}]

A

B

“Bob”

“Sue”

?

Temporal vs
Logical

[{a,4}, {b,3}, {c,2}]

[{a,2}, {b,3}, {c,2}]

A

B

“Bob”

“Sue”

Bob

Temporal vs
Logical

1429533664000

A

B

“Bob”

“Sue”

?
1429533662000

Temporal vs
Logical

1429533664000

A

B

“Bob”

“Sue”

Bob?
1429533662000

Temporal vs
Logical

[{a,4}, {b,3}, {c,2}]

A

B

“Bob”

“Sue”

?[{a,2}, {b,4}, {c,2}]

Temporal vs
Logical

[{a,4}, {b,3}, {c,2}]

A

B

“Bob”

“Sue”

[Bob, Sue]
[{a,2}, {b,4}, {c,2}]

Temporal vs
Logical

1429533664000

A

B

“Bob”

“Sue”

?
1429533664001

Temporal vs
Logical

1429533664000

A

B

“Bob”

“Sue”

Sue?
1429533664001

Summary

• Eventually Consistent Systems allow concurrent
updates

• Temporal timestamps can’t capture concurrency

• Logical clocks (Version vectors) can

• Version Vectors are easy

History Repeating
“Those who cannot remember the past are condemned

to repeat it"

Terms
• Local value - stored on disk at some replica!

• Incoming value - sent as part of a PUT or
replication!

• Local clock - The Version Vector of the Local
Value!

• Incoming clock - The Version Vector of the
Incoming Value

Riak Version Vectors

Who’s the actor?

Riak 0.n
Client Side IDs

• Client Code Provides ID

• Riak increments Clock at API boundary

• Riak syntactic merge and stores object

• Read, Resolve, Rinse, Repeat.

Client

Riak API

Riak Vnode

Riak Vnode

Conflict Resolution

• Client reads merged clock + sibling values

• sends new value + clock

• new clock descends old (eventually!)

• Store single value

Client Version Vector

What Level of
Consistency Do We

Require?

https://aphyr.com/posts/313-strong-consistency-models

GET

A

PUT

A

GET

B

PUT

B

TEMPORAL TIME

RYOW

• Invariant: strictly increasing events per actor.

• PW+PR > N

• Availability cost

• Bug made it impossible!

Client VClock

• Read not_found []

• store “bob” [{c, 1}]

• read “bob” [{c, 1}]

• store [“bob”, “sue”] [{c, 2}]

Client VClock

• Read not_found []
• store “bob” [{c, 1}]
• read not_found []
• store “sue” [{c, 1}]

Riak Vnode

Client VClock

• If local clock: ([{c, 1}])  
descends 
incoming clock: ([{c,1}])

• discard incoming value

Client Side ID
RYOW

• Read a Stale clock

• Re-issue the same OR lower event again

• No total order for a single actor

• Each event is not unique

• System discards as “seen” data that is new

Client Side IDs
Bad

• Unique actor ID:: database invariant enforced by
client!

• Actor Explosion (Charron-Bost)

• No. Entries == No. Actors

• Client Burden

• RYOW required - Availability Cost

Riak Version Vectors

Who’s the actor?

Vnode Version Vectors
Riak 1.n

• No more Version Vector, just say Context

• The Vnode is the Actor

• Vnodes act serially

• Store the clock with the Key

• Coordinating Vnode, increments clock

• Deliberate false concurrency

Vnode VClocks
False Concurrency

C1 C2

RIAK

GET Foo GET Foo

Vnode VClocks
False Concurrency

C1 C2

RIAK

[{a,1},{b4}]->”bob”

[{a,1},{b4}]->”bob”

Vnode VClocks
False Concurrency

C1 C2

RIAK

PUT [{a,1},{b,4}]=“Rita”

PUT [{a,1},{b,4}]=“Sue”

Vnode VClocks
False Concurrency

C1 C2

PUTFSM1 PUTFSM2

VNODE
Q

RITA
SUE

VNODE

Vnode VClocks
False Concurrency

VNODE
Q

RITA

VNODE
a [{a,2},{b,4}]=“SUE”

[{a,1},{b,4}]

Vnode VClocks
False Concurrency

VNODE
Q

[{a,3},{b,4}]=[RITA,SUE]

VNODE
a

[{a,2},{b,4}]=“SUE”

Client

Riak API

Riak API

Coordinator

Vnode VV
Coordinator

Vnode VV - Coordinator

• If incoming clock descends local

• Increment clock

• Write incoming as sole value

• Replicate

Vnode VV - Coordinator
• If incoming clock does not descend local

• Merge clocks

• Increment Clock

• Add incoming value as sibling

• Replicate

Vnode VV - Replica

Vnode VClock
GOOD

• Far fewer actors

• Way simpler

• Empty context PUTs are siblings

Vnode VClock
BAD

• Possible latency cost of forward

• No more idempotent PUTs

• Store a SET of siblings, not LIST

• Sibling Explosion

• As a result of too much false concurrency

Sibling Explosion

• False concurrency cost

• Many many siblings

• Large object

• Death

Sibling Explosion

• Data structure
• Clock + Set of Values

• False Concurrency

Sibling Explosion

Sibling Explosion

C1 C2

RIAK

GET Foo GET Foo

Sibling Explosion

C1 C2

RIAK

not_found

not_found

Sibling Explosion

C1

RIAK

PUT []=“Rita”
[{a,1}]->”Rita”

Sibling Explosion

C2

RIAK

PUT []=“Sue”
[{a,2}]->[”Rita”, “Sue”]

Sibling Explosion

C1

RIAK

PUT [{a, 1}]=“Bob”

[{a,3}]->[”Rita”, “Sue”, “Bob”]

Sibling Explosion

C2

RIAK

PUT [{a,2}]=“Babs”
[{a,4}]->[”Rita”, “Sue”, “Bob”, “Babs”]

Vnode VClock

• Trick to “dodge’ the Charron-Bost result

• Engineering, not academic

• Tested (quickchecked in fact!)

• “Action at a distance”

Dotted Version Vectors
Dotted Version Vectors: Logical
Clocks for Optimistic Replication

http://arxiv.org/abs/1011.5808

http://arxiv.org/abs/1011.5808

Vnode VClocks + Dots
Riak 2.n

• What even is a dot?

• That “event” we saw back a the start

A

{a, 1}

{a, 2}

Oh Dot all the Clocks

✴Data structure

• Clock + List of Dotted Values

[{{a, 1}, “bob”}, {{a, 2}, “Sue”}]

Vnode VClock
✴ If incoming clock descends local

• Increment clock

• Get Last Event as dot (eg {a, 3})

• Write incoming as sole value + Dot

• Replicate

Vnode VClock
✴ If incoming clock does not descend local

• Merge clocks

• Increment Clock

• Get Last Event as dot (eg {a, 3})

• Prune siblings!

• Add incoming value as sibling

• Replicate

Oh drop all the dots

✴Prune Siblings

• Remove any siblings who’s dot is seen by the
incoming clock

• if Clock >= [Dot] drop Dotted value

Vnode VClocks
[{a, 4}]

Rita

Sue

Babs

Bob

[{a, 3}]

Pete

Vnode VClocks
+ Dots

[{a, 4}]

Rita

Sue

Babs

Bob

[{a, 3}]

Pete{a,1}

{a,2}

{a,3}

{a,4}

Vnode VClocks
+ Dots

[{a, 4}]

Babs

[{a, 3}]

Pete

{a,4}

Vnode VClocks
+ Dots

[{a, 5}]

Babs

Pete

{a,4}

{a,5}

Dotted Version Vectors

✴ Action at a distance

✴ Correctly capture concurrency

✴ No sibling explosion

✴ No Actor explosion

KV679

Riak Overview
Read Repair. Deletes.

Replica A Replica B Replica C

Client X

PUT “bob”

Read Repair

Replica A Replica B Replica C

Client
GET

“Bob”

“Bob”

not_found

Read Repair

Replica A Replica B Replica C

Client

“Bob”

“Bob”!!!

Replica A Replica B Replica C

Client X

DEL ‘k’ [{a, 4}, {b, 3}]

C’

Replica A Replica B Replica C

C’

Del FSM

GET

Replica A Replica B Replica C

C’

Del FSM

GET A=Tombstone, B=Tombstone, C=not_found

Read Repair

Replica A Replica B Replica C

“Tombstone”!!!

Replica A Replica B Replica C

C’

Client

GET A=Tombstone, B=Tombstone, C=Tombstone

FSM
not_found

Replica A Replica B Replica C

C’

REAP

FSM

Replica A Replica B Replica C

Client X

PUT “sue” []

Sue [{a, 1}]

C’

Replica A Replica B Replica C

C’

Hinted Hand off
tombstone

Replica A Replica B Replica C

Client

GET A=Sue[{a,1}], B=Sue[{a,1}],
C=Tombstone [{a,4}, {b1}]

FSM
not_found

Ooops!

KV679
Lingering Tombstone

• Write Tombstone

• One goes to fallback

• Read and reap primaries

• Add Key again

• Tombstone is handed off

• Tombstone clock dominates, data lost

KV679
Other flavours

• Back up restore

• Failed local read (disk error, operator “error” etc)

KV679
RYOW?

• Familiar

• History repeating

KV679
Per Key Actor Epochs

• Every time a Vnode reads a local “not_found”

• Increment a vnode durable counter

• Make a new actor ID

• <<VnodeId, Epoch_Counter>>

KV679
Per Key Actor Epochs

• Actor ID for the vnode remains long lived

• No actor explosion

• Each key gets a new actor per “epoch”

• Vnode increments highest “Epoch” for it’s Id

• <<VnodeId, Epoch>>

Replica A Replica B Replica C

Client

GET A=Sue[{a:2,1}], B=Sue[{a:2,1}],
C=Tombstone [{a:1,4}, {b1}]

FSM

[Sue, tombstone]

Per Key Actor Epochs
BAD

• More Actors (every time you delete and recreate
a key _it_ gets a new actor)

• More computation (find highest epoch for actor in
Version Vector)

Per Key Actor Epochs
GOOD

• No silent dataloss

• No actor explosion

• Fully backwards/forward compatible

Are we there yet?

?

Summary

• Client side Version Vectors

• Invariants, availability, Charron-Bost

• Vnode Version Vectors

• Sibling Explosion

Summary

• Dotted Version Vectors

• “beat” Charron-Bost

• Per-Key-Actor-Epochs

• Vnodes can “forget” safely

Summary

• Temporal Clocks can’t track causality

• Logical Clocks can

Summary

• Version Vectors are EASY!

• (systems using) Version Vectors are HARD!

• Mind the Gap!

