A Brief History Of Time

In Riak

Time In Riak

*Logical Time
*ogical Clocks

* Implementation details

Mind the Gap

How a venerable, established,
simple data structure/algorithm
was botched multiple times.

Order of Events

*Dynamo And Riak
* Temporal and Logical Time
*Logical Clocks of Riak Past

*Now

Why Riak?

Scale Up

$$$Big Iron
(still fails)

sriak

Scale Out

Commodity Servers
CDNs, App servers
DATABASES!!

sriak

Fundamental Trade Off

Low Latency/Availability:
- Increased Revenue
- User Engagement

® Lipton/Sandberg '88
® Attiya/Welch '94

® Gilbert/Lynch '02 Strong Consistency:
- Easier for Programmers
- Less user “surprise”

Consistency

There must exist & tOtal order on all operations
such that each operation looks A9 if it were C()mpleted
at a Single instant. This is equivalent to requiring requests of

the distributed shared memory to aCt aS if they WEre
executing on a single node, responding to

operations one at a time.

--Gilbert & Lynch

Consistency

One important property of an atomic read/write shared memory 1s that

any read operation that begins after a
write operation completes must return
that value, or the result of a later write

Opel‘ati()n. This 1s the consistency guarantee that generally provides
the easiest model for users to understand.

and 1s most convenient for those attempting to design a client application
that uses the distributed service

--Gilbert & Lynch

.Sironj

/

Lir\em'zo.blc
|
.Secvnen‘]'inl
l

\

Serinlizable

N

Serializuble

/ 0\
RR 5T

https://aphyr.com/posts/313-strong-consistency-models

/ / NOI <

PUT ‘bob’ =\ PUT “sue’

e

Consistent

Availability

Any non-failing node can respond to any
request

--Gilbert & Lynch

/ / NOI <

PUT ‘bob’ =\ PUT “sue’

e

Consistent

Consensus for a total
order of events

Requires a guorum

Coordination waits

“ ,
Replica A Replica C

/ |

PUT ‘bob” PUT “sue”

e

Consistent

Events put ina TOTAL ORDER

Client X put “BOB” |
Client Y put “SUE”

.Sironj

/

Lir\em'zo.blc
|
.Secvnen‘]'inl
l

\

Serinlizable

N

Serializuble

/ 0\
RR 5T

https://aphyr.com/posts/313-strong-consistency-models

Eventual Consistency

Eventual consistency is a consistency model used in distributed
computing that informally guarantees that, if no new updates are
made to a given data item, eventually all accesses to that item

will return the last updated value.

--Wikipedia

Replica A

Replica C
/

/

PUT bob’ -\ PUT “sue”

Avallable

Availability

When serving reads and writes matters
more than consistency of data. Deferred
consistency.

Fault Tolerance

LowilLatency

Low Latency

Amazon found every 100ms of latency cost them 1% in sales.

sriak

Low Latency

Google found an extra 0.5 seconds in search page generation time
dropped traffic by 20%.

sriak

—

R

PUT “sue”

Avallable

Optimistic replication

NO coordination -
lower latency

~[c1] “sue”
Replica A Replica C
E——

\
PUT “bob” PUT “sue”

e

| ow Latency

How Do We Order
Updates”

Time, he said, 'iIs what keeps
everything from happening at once.™

—Google Book Search p.148 “The Giant Anthology of Science Fiction”,
edited by Leo Margulies and Oscar Jerome Friend, 1954

Thursday,
1 January 1970

/

M

0 129880800 — - 1394382600
My Birthday Now-ish

Temporal Clocks

posIX time number line

/7 — N
. S .
',_
S\NRE LIGHT COVY
OBSERVER — N RN
A
¥ ‘\CE
AAST LIGHT CONT

Light Cone!

By SVG version: K. Aainsqgatsi at en.wikipediaOriginal PNG version: Stib at
en.wikipedia - Transferred from en.wikipedia to Commons.(Original text: self-made),
CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=2210907

https://commons.wikimedia.org/w/index.php?curid=2210907

Physics Problem

“ PUT “sue”

PUT “bob’
1394382600000 . "'\1394382600020
SF NY
4 148 km
14 ms Light

21 ms fibre

temporal clocks

* CAN
* A could NOT have caused B
* A could have caused B

* CAN'T

e A causedB

Dynamo
I’he Shopping Cart

Dynamo: Amazon’s Highly Available Key-value Store

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall
and Werner Vogels

Amazon.com

ABSTRACT

Reliability at massive scale is one of the biggest challenges we
face at Amazon.com, one of the largest e-commerce operations in
the world; even the slightest outage has significant financial
consequences and impacts customer trust. The Amazon.com
platform, which provides services for many web sites worldwide,
is implemented on top of an infrastructure of tens of thousands of
servers and network components located in many datacenters
around the world. At this scale, small and large components fail
continuously and the way persistent state is managed in the face
of these failures drives the reliability and scalability of the
software systems.

This paper presents the design and implementation of Dynamo, a
highly available key-value storage system that some of Amazon’s
core services use to provide an “always-on” experience. To
achieve this level of availability, Dynamo sacrifices consistency
under certain failure scenarios. It makes extensive use of object
versioning and application-assisted conflict resolution in a manner
that provides a novel interface for developers to use.

Categories and Subject Descriptors

D.4.2 [Operating Systems): Storage Management; D.4.5
[Operating Systems]: Reliability; D.4.2 [Operating Systems]:
Performance;

One of the lessons our organization has learned from operating
Amazon’s platform is that the reliability and scalability of a
system is dependent on how its application state is managed.
Amazon uses a highly decentralized, loosely coupled, service
oriented architecture consisting of hundreds of services. In this
environment there is a particular need for storage technologies
that are always available. For example, customers should be able
to view and add items to their shopping cart even if disks are
failing, network routes are flapping, or data centers are being
destroyed by tornados. Therefore, the service responsible for
managing shopping carts requires that it can always write to and
read from its data store, and that its data needs to be available
across multiple data centers.

Dealing with failures in an infrastructure comprised of millions of
components is our standard mode of operation; there are always a
small but significant number of server and network components
that are failing at any given time. As such Amazon’s software
systems need to be constructed in a manner that treats failure
handling as the normal case without impacting availability or
performance.

To meet the reliability and scaling needs, Amazon has developed
a number of storage technologies, of which the Amazon Simple
Storage Service (also available outside of Amazon and known as
Amazon S3), is probably the best known. This paper presents the
design and implementation of Dynamo, another highly available

Created by Creative Stall
from Noun Project

—
a’

Created by Creative Stall
from Noun Project

Created by Creative Stall
from Noun Project

Created by Creative Stall
from Noun Project

Created by Creative Stall Created by Creative Stall

from Noun Pro‘cc! from Noun Project
EH = E =H = = = = =H =H H HE HE =HE = = 5 5§ =5 = =5 =5 =5 = = = = = = = E = =H H = = = = =H H H HE HE = = = = = = = = = = = = = = = = = ‘s

5.0 8. 8 B. O
et -

reatend by Puvgan Juse reutend Gy Fuvghn une reatend by Puvgan Juse rested by Puvghn June rested by Puvghn June reatend by Puvgan June rested by Puvghn June reatend by Puvghn June reutenl bry Fuvgan Sune reatend by Puvgan Juse reatend by Puvghn June roiend Gry #

B. 0.
-

N S

e
v Nnary Py~ Ve N Py R Vow Neaay Py Ve N Py Vo N Py Vorm Neaay Py I Ve Neaan Py R R e N #

Created by Creative Stall Created by Creative Stall
from Noun Project from Noun Project

Optimistic replication

NO coordination -
lower latency

<

REPLICATE U

Created by Creative Stall Created by Creative St
from Noun Project from Noun Project

GET
PUT

\4

UPDATE
> _
O O 7 o

Created by Amy Schwartz
from the Noun Project

Created by Amy Schwartz
from the Noun Project

Created by Creative Stall
from Noun Project

Created by Creative St
from Noun Project

PUT

PUT

o
. e ———
o

Created by Amy Schwartz

from the Noun Project Created by Amy Schwartz

from the Noun Project

Created by Creative Stall

from Noun Project from Noun P,

£

Created by Charlie Bob Gordon
from Noun Project

TEMPORAL TIME

B

Created by Creative Stall
Created by Creative Stall from Noun Project Created by Creative Stall
from Noun Project from Noun Project PUT

>reated by Creative Stall

rom Noun Project
GET

PUT GET

=

Created by Amy Schwartz Created by Amy Schwartz Created by Amy Schwartz Created by Amy Schwartz
from the Noun Project from the Noun Project from the Noun Project from the Noun Project

_

:nj

o o

Timestamp - total order

155196119890 >

155196118001

O O o o

reated by Amy Schwartz

rom the Noun Project Created by Amy Schwartz

from the Noun Project

Created by Amy Schwartz
from the Noun Project

Logical clock - partial order

Created by Amy Schwartz Created by Amy Schwartz
from the Noun Project from the Noun Project

Created by Amy Schwartz
from the Noun Project

Clocks, Time, And the Ordering of
Events

* Logical ITime
e Causality
* A influenced B

A and B happened at the same
fime

* Per-process clocks, only tick when
something happens

Leslie Lamport http://dl.acm.org/citation.cfm?id=359563

http://dl.acm.org/citation.cfm?id=359563

Detection of Mutual
Inconsistency In
Distributed Systems

http://zo0.cs.yale.edu/classes/cs426/2013/bib/
parker83detection.pdt

Version Vectors - updates to a data item

Version Vectors or
Vector Clocks?

version vectors - updates to a data
item

http://haslab.wordpress.com/2011/07/08/version-vectors-are-
not-vector-clocks/

http://haslab.wordpress.com/2011/07/08/version-vectors-are-not-vector-clocks/

Summary

 Distributed systems exist (scale out)

* There is a trade off (Consistency/Availability)

* [0 decide on a value we need to “order” updates
e [emporal time Is Inadequate

e Logical time can help

Version Vectors

Version Vectors

| 1&, 2}, b, 14, ic, 1}]

&

&
® &
A 3 B

Version Vectors

| 1&, 2}, b, 14, ic, 1}]

&

&
® &
A 3 B

Version Vectors

| 1&, 2}, b, 14, ic, 1}]

?

Version Vectors

| 1&, 2}, b, 14, ic, 1}]

Version Vectors

| 1&, 2}, b, 14, ic, 1}]

Version Vectors

[{a,2}, {b,1}, {c, 1}]

Version Vectors
Update

[{a,2}, {b,1}, {c, 1}]

Version Vectors
Update

[{a,2}, {b,2}, {c,1}]

Version Vectors
Update

[{a,2}, {b,3}, {c,1}]

Version Vectors
Update

[{a,2}, {b,3}, {c,2}]

Version Vectors
Descends

*A descends B: A>=B
* A has seen all that B has

* A summarises at least the same history as B

Version Vectors
Descends

3}, {c,2}]

1a,2}, 1,3}, 1
]

[1a,2}, 1b,3], {C,2]] [{a,2}, {b

0,3}, {c,2}] [{a,2}, {b,3}, {c,2]]

[{a,2}, {b,3}, {C,2}]
[{a,4},

Version Vectors
Dominates

*A dominatesB: A>B

* A has seen all that B has, and at least one more
event

* A summarises a greater history than B

Version Vectors
Dominates

[{a,2}, {b,3}, {c,2}]

> 10

[1a,5}, 1b,3}, {c,5}, 1d, 1}] [1a,2}, 10,3}, {C,2]]

Version Vectors
Concurrent

*A concurrentwith B: A | B
* A does not descend B AND B does not descend A
* A and B summarise disjoint events

* A contains events unseen by B AND B contains
events unseen by A

Version Vectors

Concurrent
[a, 1i] [{b,1}]
& &
[{a,4}, {b,3}, {c,2]] [{a,2}, {b,4}, {c,2}]

[{a,5}, {b,3}, {c,5}, {d, 1}] [{a,2}, {b,4}, {c,2}, {e,1}]

write
handled by Sx

v

D1 ([Sx,1])

write
handled by Sx

v

D2 ([Sx,2])

write write
handled by Sy handled by Sz

D3 ([Sx,2],[Sy,1]) D4 ([Sx,2],[Sz,1])

reconciled
and wntten by

D5 ([Sx,3],[Sy,1]1[Sz,1])

L ogical Clocks

write
handled by Sx

v

D1 ([Sx,1])

write

happens before handled by Sx

v

D2 ([Sx,2])

write write
handled by Sy handled by Sz

concurrent
divergent

D3 ([Sx,2],[Sy,1]) D4 ([Sx,2],[Sz,1])

reconciled
and wntten by

convergent D5 ([Sx.3L.[Sy.11[Sz,1])

Version Vectors
Merge

*AmergewithB: AuB
*AuB=C
*C>=Aand C >=B
*IfA|BC>AandC >B

*C summarises all events in A and B

*Pairwise max of counters in A and B

Version Vectors

Merge
[{a, 1}] (b, 1]
& =
[{a,4}, {b,3}, {c,2]] [{a,2}, {b,4}, {c,2]]
O
[{a,5}, {b,3}, {c,5}, {d, 1}] [{a,2}, {b,4}, {c,2}, {e,1}]

Version Vectors

Merge
{a,1}{b,2]]

b 10,441

[{a,5}, {b,3}, {c,5}, {d, 1},{e,1}]

Syntactic Merging

*Discarding “seen” information
* Retaining concurrent values

*Merging divergent clocks

Temporal vs

| ogical
A
[{a,4}, {b,3}, {c,2}]
. P> o
[{a,2},

. * “Sue”

Temporal vs

) | ogical

[{a,4}, {b,3}, {c,2}]

o Bob
e

&,

Temporal vs

) | ogical
1429533664000 * ‘Bob’ f?
B

1429533662000 * "Sue’

Temporal vs
| ogical

1 429533664000

"Bob”
1429533662000 * “Sue”

Temporal vs

) | ogical

[{a,4}, {b,3}, {c,2}]

. * “Bob”
B

[{a,2}, {b,4}, {c,2}]

b P

f?

Temporal vs

| ogical
A

[{a,4}, {b,3}, {c,2}]

L > |Bob, Sue]

Temporal vs

) | ogical
1429533664000 * ‘Bob’ f?
B

1429533664001 * "Sue’

Temporal vs
| ogical

1 429533664000

“Bob”
1429533664001 » “Sue”

summary

e Eventually Consistent Systems allow concurrent
updates

* [emporal timestamps can't capture concurrency
* Logical clocks (Version vectors) can

* Version Vectors are easy

History Repeating

“Those who cannot remember the past are condemned
to repeat It’

Terms

- Local value - stored on disk at some replica

- Incoming value - sent as part of a PUT or
replication

- Local clock - The Version Vector of the Local
Value

- Incoming clock - The Version Vector of the
Incoming Value

Riak Version Vectors

Who’'s the actor?

Riak 0.n
Client Side IDs

* Client Code Provides ID
* Riak increments Clock at APl boundary
e Riak syntactic merge and stores object

 Read, Resolve, Rinse, Repeat.

increment vclock

——» send to N vnodes

ompare clocks

Client Version Vectors

FALSE (concurrent)

read |—» update value

increment vclock

——— send to N vnodes

e R

compare clocks

FALSE (concurrent)

RUE

Conflict Resolution

* Client reads merged clock + sibling values
* sends new value + clock
* new clock descends old (eventually!)

e Store single value

Client Version Vector

What Level of
Consistency Do We
Require?

.Sironj

/

Lir\em'zo.blc
|
.Secvnen‘]'inl
l

\

Serinlizable

N

Serializuble

/ 0\
RR 5T

https://aphyr.com/posts/313-strong-consistency-models

TEMPORAL TIME

Created by Creative Stall
Created by Creative Stall from Noun Project Created by Creative Stall
from Noun Project from Noun Project PUT

>reated by Creative Stall

rom Noun Project
GET

PUT GET

=

Created by Amy Schwartz Created by Amy Schwartz Created by Amy Schwartz Created by Amy Schwartz
from the Noun Project from the Noun Project from the Noun Project from the Noun Project

_

o o

:n]’

RYOW

* |[nvariant: strictly increasing events per actor.
e PW+PR > N
* Avallability cost

 Bug made it impossible!

Client VClock

 Read not_found ||
e store “bob” [{c, 1}]
* read “bob” [{c, 1}]
e store [“bob”, “sue”]| [{c, 2}]

Client VClock

 Read not_found ||
e store “bob” [{c, 1}]
e read not_found ||

e store “sue” [{c, 1}]

FALSE

FALSE (concurrent)

Client VClock

e |t local clock: ([{c, 1}])
descends
incoming clock: ([{c,1}])

e discard incoming value

Client Side D
RYOW

* Read a Stale clock

* Re-issue the same OR lower event again
* No total order for a single actor

e Fach event is not unigque

e System discards as “seen” data that is new

Client Side IDs
Bad

* Unigue actor ID:: database invariant enforced by
client!

* Actor Explosion (Charron-Bost)
e No. Entries == No. Actors
e Client Burden

* RYOW required - Availability Cost

Riak Version Vectors

Who’'s the actor?

Vnode Version Vectors
Riak 1.n

* No more Version Vector, just say Context
* The Vnode is the Actor

* Vnodes act serially

» Store the clock with the Key
* Coordinating Vnode, increments clock

* Deliberate false concurrency

Vnode VClocks
False Concurrency

RIAK

GET Foo GE

Foo

Vnode VClocks
False Concurrency

RIAK

[{a,1},{b4}]->"bob”

@

[{a,1},{b4}]->"bob”

@

Vnode VClocks
False Concurrency

RIAK

PUT [{a,1},{b,4}]="Sue”

PUT [{a,1},{b,4}]="Rita”

@

@

Vnode VClocks
False Concurrency

Vnode VClocks
~alse Concurrency

[{a,2},{b,4}]="SUE’

Vnode VClocks
~alse Concurrency

[{a,3},1b,4}]=[RITA,SUE]

[{a,2},{b,4}]="SUE"

send to coordinating vnode Rlak API

rontier Value

replicate to N-1 vnodes R I a. k A P I

Vnode Version Vectors

V=V

e clocks Vnoae VV

Coordinator

Vnode VV - Coordinator

* |f Incoming clock descends local
* Increment clock
* Write Incoming as sole value

 Replicate

Vnode VV - Coordinator

* [f Incoming clock does not descend local
 Merge clocks
* Increment Clock
* Add incoming value as sibling

 Replicate

Vnode VV - Replica

FALSE (concurrent)

Vnode VClock
GOOD

e Far fewer actors
* \Way simpler

 Empty context PUIs are siblings

Vnode VClock
BAD

* Possible latency cost of forward
 No more idempotent PUTs

e Store a SET of siblings, not LIST
* Sibling Explosion

* As aresult of too much false concurrency

Sibling Explosion

* False concurrency cost
 Many many siblings
e [arge object

e Death

Sibling Explosion

e Data structure
e Clock + Set of Values

e False Concurrency

Sibling Explosion

Sibling Explosion

RIAK

GET Foo GE

Foo

@

@

Sibling Explosion

RIAK

not found

@

not found

@

Sibling Explosion

RIAK

PUT []="Rita”
[{a,1}]->"Rita”

Sibling Explosion

RIAK

PUT [|="Sue”

@

{a,2}]->["Rita”, “Sue”]

Sibling Explosion

RIAK

PUT [{a, 1}|="Bob’

3}]->["Rita”, "Sue”, "Bob”]

Sibling Explosion

RIAK

PUT [{a,2}]="Babg”

[1a,41];

@

["Rita”, “Sue”, "Bob”, “Babs’]

Vnode VClock

* Trick to “"dodge’ the Charron-Bost result
* Engineering, not academic
» Tested (quickchecked in fact!)

e "Action at a distance”

Dotted Version Vectors

Dotted Version Vectors: Logical
Clocks for Optimistic Replication
http://arxiv.org/abs/1011.5808

http://arxiv.org/abs/1011.5808

Vnode VClocks + Dots
Riak 2.n

 \What even is a dot?

e That “event” we saw back a the start

Oh Dot all the Clocks

*Data structure

e Clock + List of Dotted Values

[{{a, 1}, "bob™}, {{a, 2}, “Sue’}]

Vnode VClock

* |t incoming clock descends local
* Increment clock
 (Get Last Event as dot (eg {a, 3})
* Write incoming as sole value + Dot

 Replicate

Vnode VClock

* |t incoming clock does not descend local
 Merge clocks
e Increment Clock
 (Get Last Event as dot (eg {a, 3})
* Prune siblings!
 Add incoming value as sibling

 Replicate

Oh drop all the dots

*Prune Siblings

* Remove any siblings who's dot is seen by the
iIncoming clock

e if Clock >= [Dot] drop Dotted value

Vnode VClocks

[{a, 3}]

[{a, 4}]

Bob

Vnode VClocks
+ Dots

[{a, 4}]

[{a, 3}]

&

Vnode VClocks
+ Dots

[{a, 3}]

‘

Vnode VClocks
+ Dots

[{a, 5}]

Dotted Version Vectors

* Action at a distance
* Correctly capture concurrency
* No sibling explosion

* No Actor explosion

KV6 79

Riak Overview

Read RepairsiDeletes.

Replica A Replica C

PUT "bob”

Client X

"‘Bob” \
Replica A Replica C
Sop (/ Not_found «

GET

Read Repalr

Replica A Replica C
“Bob”!!!

Read Repalr

Replica A] ReplicaC
—1

DEJL 'k’ [{a, 4}, {b, 3}]

Client X

Replica A

A

Replica C

GET

/

A=Tombstone, B=Tombstone, C=not_found

Replica A Replica C
k@bstone”! !

Read Repalr

/

GET A=Tombstone, B=Tombstone, C=Tombstone

v

not found

Replica C

Replica A

A

P \S‘Lﬁm

PUT “sue” []

"

Replica A Replica C

Hinted Hand off
tombstone

/

GET A=Suel{a,1}], B=Suel{a,1}],
C=Tombstone [{a,4}, {b1}]

not found

Ooops!

KVGE /79
Lingering Tombstone

Write Tombstone
* One goes to fallback
Read and reap primaries

Add Key again

Tombstone is handed off

Tombstone clock dominates, data lost

KV679
Other flavours

 Back up restore

* [ailed local read (disk error, operator “error” etc)

KV6/79
RYOW?

e Familiar

* History repeating

KV679
Per Key Actor Epochs

* Every time a Vnode reads a local "not_found”
e |ncrement a vnode durable counter
e Make a new actor |ID

 <<Vnodeld, Epoch_Counter>>

KV /79
Per Key Actor Epochs

* Actor ID for the vnode remains long lived
* No actor explosion
 Each key gets a new actor per “epoch”
* Vnode increments highest “Epoch” tor it’s Id

 <<Vnodeld, Epoch>>

/

A

GET A=Suel{a:2,1}], B=Sue[{a:2,1}],
C=Tombstone [{a:1,4}, {b1}]
| [Sue, tombstone]

Per Key Actor Epochs
BAD

 More Actors (every time you delete and recreate
a key _It_ gets a new actor)

 More computation (find highest epoch for actor in
Version Vector)

Per Key Actor Epochs
GOOD

e No silent dataloss

* No actor explosion

» Fully backwards/forward compatible

Are we there yet”?

[

summary

 Client side Version Vectors
* Invariants, availability, Charron-Bost
e \/node Version Vectors

e Sibling Explosion

summary

e Dotted Version Vectors
e “Dheat” Charron-Bost
* Per-Key-Actor-Epochs

* Vnodes can “forget” safely

summary

 Jemporal Clocks can't track causality

* [ogical Clocks can

summary

e \ersion Vectors are EASY'!

e (systems using) Version Vectors are HARD!

 Mind the Gap!

