Model-Based Testing (DIT848 / DAT261) Spring 2017

Lecture 7 Introduction to MBT

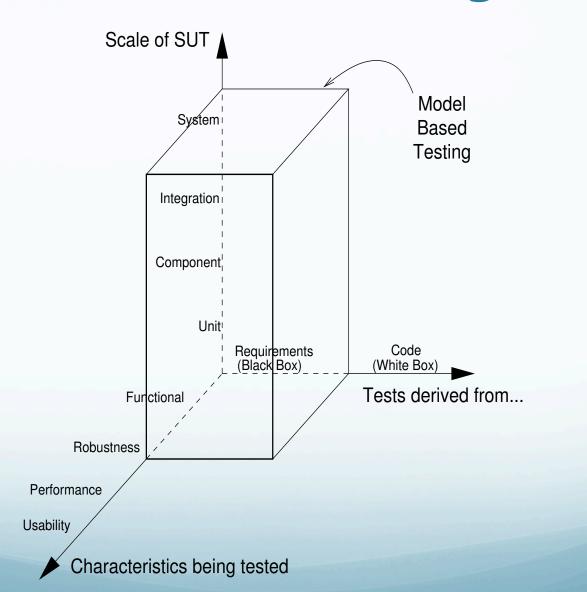
Gerardo Schneider Department of Computer Science and Engineering Chalmers | University of Gothenburg

Many slides based on material provided by Mark Utting

What have we seen

What remains

- V&V: Validation & Verification
 - The V model
 - Black box testing
 - White box testing
 - Something on coverage
- (Extended) Finite State Machines


Guest lectures?

TBD

The rest of the lectures: MBT

- Introduction (concepts, terminology,...) – Today
- 2. ModelJUnit today
- 3. Graph theory for MBT Wed next week
- Making your tests executable Wed next week
- 5. How to select your tests Wed next week

Kinds of Testing

What is Model-Based Testing

Four main approaches known as MBT

- 1. Automatic generation of test input data from a domain model
 - Information on the domain of input values
 - Not known whether test passess or not
- 2. Automatic generation of test cases from an environmental model
 - Environment: expected usage of SUT, operation frequences...
 - Do not specify expected output
- 3. Automatic generation of test scripts from abstract tests
 - Abstract description of test cases (eg. UML seq. Diag.)
 - Transforms abstract test cases into low-level executable script
- 4. Automatic generation of test cases with oracles from a behavior model

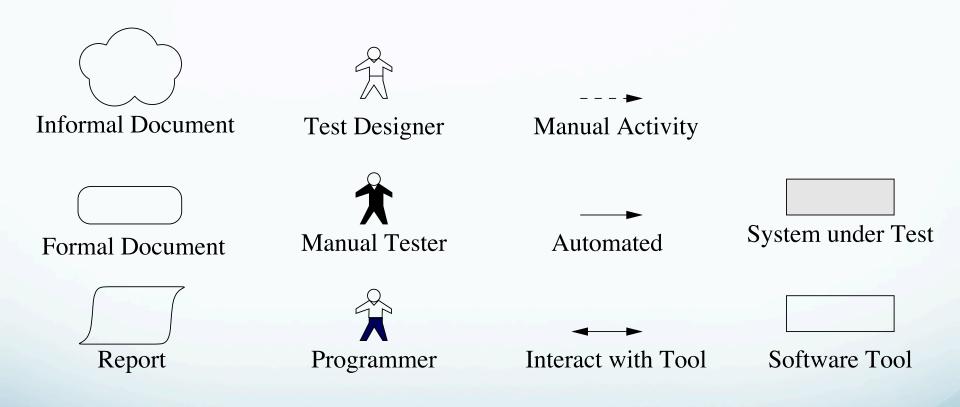
Our

focus!

- Executable tests with expected output
- Model must describe expected behavior of SUT

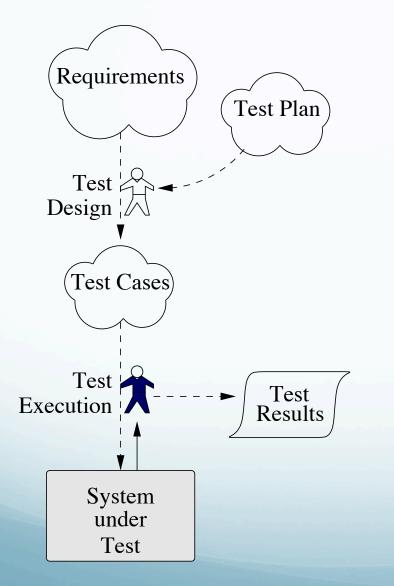
So... MBT is the automation of the design of black-box tests

MBT in context...


When designing **functional testing**, 3 key steps:

- 1. Designing the test case
- 2. Executing the tests and analyzing the result
- 3. Verifying how the tests cover the requirements

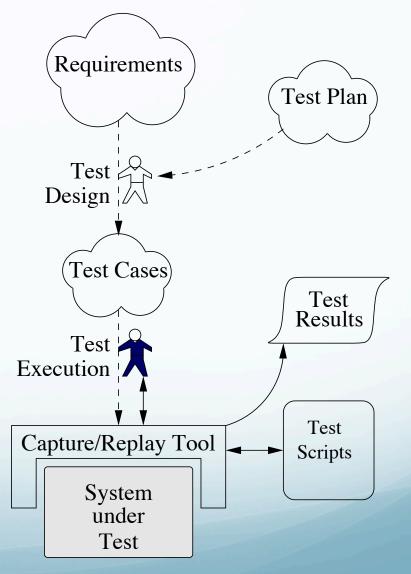
Different testing processes


- 1. Manual testing process
- 2. Capture/replay testing process
- 3. Script-based testing process
- Keyword-driven automated testing process
- 5. The MBT process

Preliminaries: notation...

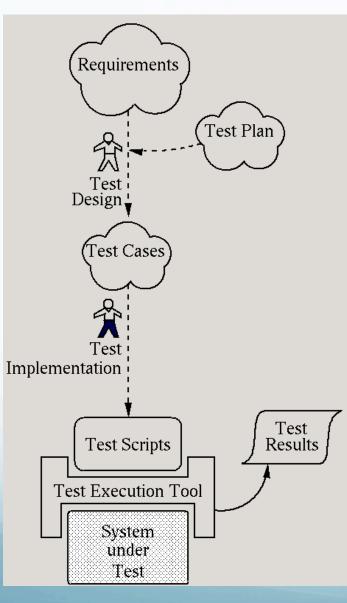
Source: M. Utting and B. Legeard, Practical Model-Based Testing

1. Manual Testing



- + easy & cheap to start
 + flexible testing
 expensive every execution
 no auto regression testing
 ad-hoc coverage
- no coverage measurement

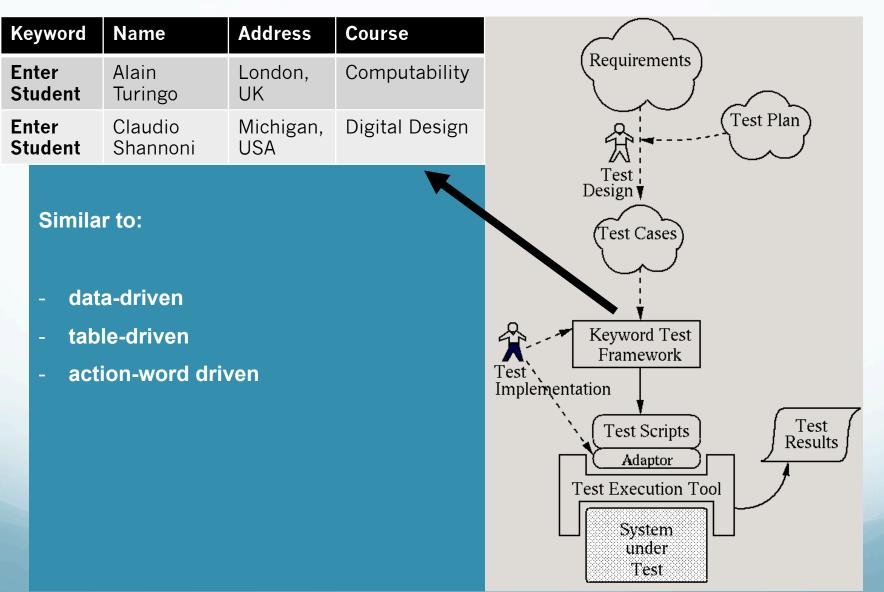
2. Capture-Replay Testing


- + flexible testing
- expensive first execution
- + auto regression testing
- fragile tests break easily
- ad-hoc coverage
- no coverage measurement
- low-level recorded tests

NOTE: Mostly used to automate testing of graphical user interface (GUI)

Source: M. Utting and B. Legeard, Practical Model-Based Testing

3. Script-Based Testing

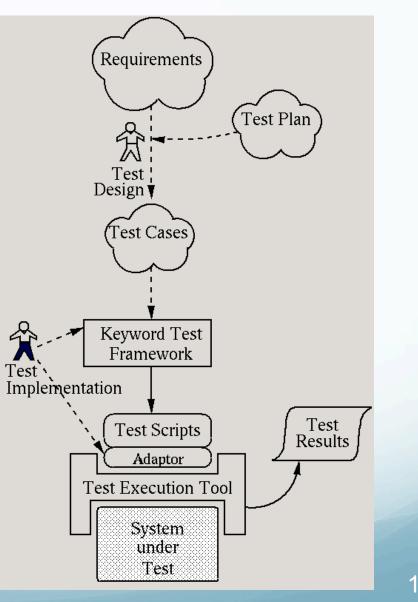


+/- test impl. = programming
+ automatic execution
+ auto regression testing
- fragile tests break easily?
(depends on abstraction)
- ad-hoc coverage

- no coverage measurement

Source: M. Utting and B. Legeard, Practical Model-Based Testing

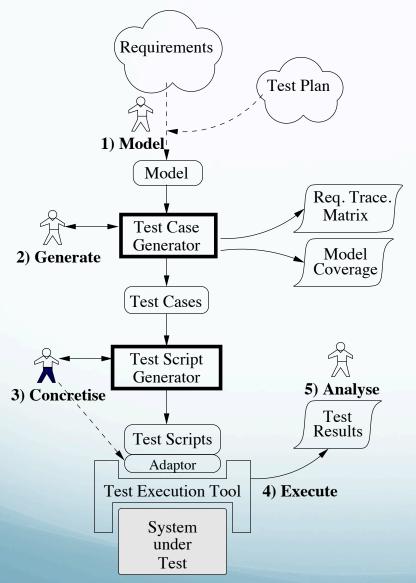
4. Keyword-Driven Testing



Source: M. Utting and B. Legeard, Practical Model-Based Testing

4. Keyword-Driven Testing

- + abstract tests
- + automatic execution
- + auto regression testing
- robust tests
- ad-hoc coverage
- no coverage measurement
- manual design of test data and oracle


Note: The "adaptor" allows translate sequence of keywords and data into executable tests

5. Model-Based Testing

- 1. Model the SUT and/or its environment
 - Write some abstract model / annotate with relationship between tests and requirements
- 2. Generate abstract tests from the model
 - Chose some test selection criteria to generate tests from the model. Coverage and results refer to the model!
- 3. Concretize the abstract tests to make them executable
 - Use a transformation tool to get concrete tests (on the SUT) from the abstract tests from the model
- 4. Execute the tests on the SUT and assign verdicts
- 5. Analyze the test results (and take corrective action)
 - A fault in the test case might be due to a fault in the adaptor code or in the model

5. Model-Based Testing

+ abstract tests + automatic execution + auto regression testing + auto design of tests + systematic coverage + measure coverage of model and requirements - modeling overhead Important: usually first abstract tests -> needs to get concrete tests: adaptor!

Building Models...

Reusing or building from scratch?

Reusing existing development model

- 100% reuse; not always possible:
 - Develop. model usually contains too much detail
 - Usually doesn't describe the SUT dynamic behavior
 - Not abstract enough yet precise enough for test generation

Reuse something

- Some x% of reuse (0<x<100)
 - Eg. reuse high-level class diagram and some use cases; add behavioral details

Developing model from scratch

- 0% reuse
- Maximize independence
- A lot of effort

Whatever approach: relate your model to the informal requirements as close as possible! 14

Benefits of MBT

- 1. SUT fault detection
 - Increase the possibility of finding errors
- 2. Reduces testing cost and time
 - Less time and effort spent on writing tests and analyzing results
 - Could generate shortest test sequences
- 3. Improves test quality
 - Possible to measure the "quality" by considering coverage (of model)
- 4. Detects requirements defects
 - Modeling phase exposes requirements issues
- 5. Traceability
 - Between requirements and the model
 - Between informal requirements and generated test cases
 - **Requirements evolution**
 - Update test suite to reflect new requirements: update model and do it automatically

Limitations of MBT

Inherent to MBT:

- Cannot guarantee to find all differences between the model and the implementation
- Need of skilled model designers: abstract and design models
- Mostly (only?) for functional testing
- 4. Some tests not easily automated:eg. installation process

After you adopt MBT:

- 1. Outdated requirements
 - Might build the wrong model
- 2. Inappropriate use of MBT
 - Parts difficult to model; may get the wrong model
- 3. Time to analyze failed tests
 - It may give complex test sequences
- 4. Useless metrics
 - Number-of-tests metrics not useful (huge number!) – other metrics needed

How to model your system?

- 1. Decide on a good level of abstraction
 - What to include and what not to
- 2. Think about the data it manages, operations it performs, subsystems, communication...
 - Maybe start from a UML class diagram?
 - Be sure you simplify your class diagram (simpler for testing than for design!)
- 3. Decide notation
- 4. Write the model
- 5. Ensure your model is accurate
 - Validate the model (it specifies the behavior you want)
 - Verify it (correctly typed and consistent)

Use your model to generate your tests

Notations for modeling

Seven possible "paradigms"

1. Pre/post (state-based)

Snapshot of internal state of the system + operations

• B, Z, UML OCL, VDM, ...

2. Transition-based

 FSMs, statecharts, LTS, I/O automata, ...

3. History-based

Allowable traces if behavior over time

MSC, sequence diagrams, ...

4. Functional

Collection of mathematical functions

- FOL, HOL, ...
- 5. Operational

Collection of executable parallel processes

• CSP, CCS, Petri nets, PI-calculus, ...

6. Statistical

Probabilistic model of the event and input values

- Markov chains, ...
- 7. Data-flow

18 Lustre, Block diagrams in Simulink, ...

Choosing a notation

For **MBT**, transition-based and pre/post notations are the most used

• Guidelines: Is the system data-oriented or control-oriented?

Data-oriented systems have state variables, rich types (sets, relations, sequences,...).

Operations to access and manipulate data

Data-oriented systems are most easily specified using pre/post notations

 Eg. B, having powerful libaries of data structures

> Our focus in this course: transition-based notations!

In control-oriented systems the set of available operations depends on the state

Control-oriented systems are most easily specified using transitionbased notations

• Eg. **FSMs**

Note 1: Possible to use transition-based notations for data-oriented systems: handle data structures too (eg. EFSMs)

Note 2: In MBT the model should be formal!

Drinking Vending Machine (DVM) Case Study Utting & Legeard book: sec 3.2, pp.66!

Requirements:

DVM case study Use case Utting & Legeard book: Use Case 3.1, pp.67!

DVM case study High-level design

We need a high-level architecture of the DVM: how the controller interacts with other components

UML class diagram:

DrinkShelf	8 1	< <sut>></sut>		< <enumeration>></enumeration>
avail:Boolean price:Integer	drink {ordered}	Controller display:MESSAGE		MESSAGE ShowBalance
release() setPrice(Integer)		balance:0200		InsufficientFunds
See nee (moger)		< <events>> insertCoin(Integer)</events>	DrinkNotAvailable OutOfService	
CoinBox		returnButton()		
keepCoin() rejectCoin() giveChange(Integer)	1 1 coins	selectDrink(Integer) outOfService() putInService()		
		setPrice(Integer,Integer)		22

DVM case study What's next?

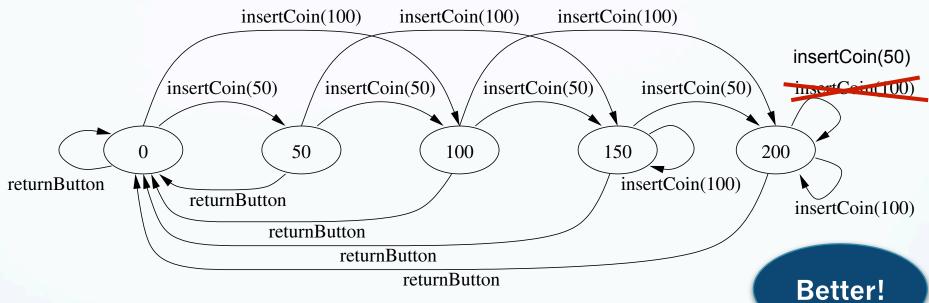

- Informal description, use cases, high-level design, etc. give us an idea of what a DVM controller does
- But... it doesn't specify all the input conditions, alternatives, exception cases, we want to test
- Not precise enough for test generation

We need to write a model "for testing"!

DVM - Transition-based model Group exercise

- Come up with a finite state machine (FSM) that models the Controller component of the DVM
 - Start with a machine for the money operation insertCoin and returnButton
 - Assume you only have coins of 50 and 100

DVM – FSM model Partial solution to FSM for the DVM money operation (*insertCoin*, *returnButton*)


 You will need to come with more complex transition-based notations (UML state machine diagrams, EFSMs, etc.) for a full solution useful for test generation

Btw, anything wrong with the proposed solution?

- 2 transitions insertCoin(100) from state "200"
- Correction: insertCoin(100) + insertCoin(50)

Source: M. Utting and B. Legeard, Practical Model-Based Testing

DVM - FSM model Some comments...

How to interpret the loops in states 150 and 200?

- 1. Nothing happens -> the content of the cash box doesn't change
- Wrong in state 150 -> add a transition with insertCoin(100) from 150 to 200 and interpret state 200 as "containing at least 200"

In both cases: Underspecified what happens with the coins (change needs to be given)
-> fix when full model
26

Pre/Post models in B... in 1 slide

- The B abstract machine notation: formal modeling notation for specifying software
 - High-level libraries of data structures
 - Code-like notation for post-conditions
- Development starts from an abstract model
 - High-level functional view
- Write a series of increasingly detailed designs: refinement
- B supports tools for automatic generation of proof obligations to prove correct refinement

MBT using B: checks the model against the implementation, but via testing (does not guarantee to find all errors)!

DVM - B model

Utting & Legeard book: listing 3.1, pp.80!

Partial: models *money* only

Invariant: doesn't change in the program

||: Multiple assignments

reject: output variable *insertCoin*: name operation *coin*: input variable

What follows only holds provided the **precondition** holds

MBT - How to do in practice?

Next lecture on how to write an EFSM in Java

ModelJUnit

- In practice: future lectures
 - Extracting and selecting your tests from (E)FSM

MBT - Summary

- MBT is the automation of black-box test design
 - Test cases can be automatically generated from the model using MBT tools
- The model must be precise and concise
- Tests extracted are **abstract**; they must be transformed into **executable tests**
- Not practical to (completely) reuse a development model for MBT
- Transition-based notations: better for control-oriented systems
- **Pre/post notations**: preferable for data-oriented systems
- Possible to write partial models and refine
 - A very abstract model: few high-level tests covering few aspects of the system
 - A more detail model: tests covering more
- EFSM: useful for both control and data-oriented systems

The quality and number of tests that you get from MBT depend on the quality and precision of your model

- M. Utting and B. Legeard, *Practical Model-Based Testing*. Elsevier - Morgan Kaufmann Publishers, 2007
 - Chapters 1-3

NOTE: Look at the references to the book in the slides as many pictures have been removed for copyright reasons!