
Model-Based Testing
(DIT848 / DAT261)

Spring 2017
Lecture 3

White Box Testing - Coverage

Gerardo Schneider
Dept. of Computer Science and Engineering

Chalmers | University of Gothenburg

Some slides based on material by Magnus Björk, Thomas Arts and Ian Somerville

1

What have we seen so far?

�  V&V:	Valida)on	&	Verifica)on		
�  The	V	model	

�  Test	levels	

�  Black	box	tes)ng		
�  (Extended)	Finite	State	Machines	

Any	ques)on?	

2

TEST

Today’s topic
 Verification Validation

Code is executed
•  sequential
•  concurrent
•  distributed

user

Dynamic Static
Artifact Inspection

manual automatic
•  Static analysis
•  Formal methods White box

Coverage

Black box ……
Several

techniques

3

White box testing

4

Do I need more test cases?

�  I	think	I	have	test	cases	for	all	aspects	of	the	
specifica)on,	

�  I’ve	added	test	cases	for	boundary	values,	
�  …guessed	error	values,	
�  …and	performed	10.000	random	test	cases.	

	

Is	that	enough?	

5

Do I need more test cases?
�  The	bad:	

�  There	is	no	way	to	know	for	certain	

�  The	good:	
�  There	are	techniques	that	can	help	us		

�  Iden)fy	some	aspects	that	may	otherwise	go	unno)ced	
� Give	some	criteria	for	”enough”	

Coverage
techniques

6

Black box and White box testing

Black	box	tes)ng:	Test	tac)c	in	which	the	test	object	is	
addressed	as	a	box	one	cannot	open.		

A	test	is	performed	by	sending	a	sequence	of	input	values	and	
observing	the	output	without	using	any	knowledge	about	
the	test	object	internals.	

	

White	box	tes)ng:	Test	tac)c	in	which	the	test	
object	is	addressed	as	a	box	one	can	open		

A	test	is	performed	by	sending	a	sequence	of	input	
values	and	observing	the	output	and	internals	
while	explicitly	using	knowledge	about	the	test	
object	internals	

	

event

starts

Another event

event

event

event

software

software

 case Prop of
 true -> …..;
 false ->…..
end

Also called
Structural testing or
Glass box testing

What white box testing is not

� White	box	tes)ng	is	(typically)	NOT:	
�  Black	box	test	cases	that	refer	to	internal	constructs	

Id: calc.h/pressPlus/1
Purpose: verifying that the correct operation is stored
Precondition: state is a CalcStatePtr pointing to a valid
calculator state
Action: call pressPlus(state)
Expected outcome: state->op = Plus Refers to internal

representation,
not interface •  Drawbacks	of	test	cases	like	this:	

–  Test	proper)es	not	in	specifica)on	
–  Fail	if	internal	representa)on	is	changed	
–  And	when	they	fail,	it	may	be	hard	to	understand	why/where	

•  …but	some)mes	they	may	be	necessary	
–  Unit	tes)ng	of	internal	func)ons	 8

What white box testing is
�  ’Normal’	white	box	tes)ng	is:	

�  Black	box	tes)ng,	combined	with	tools	that	analyze	
implementa)on	of	specific	proper)es	

� White	box	techniques	covered	in	this	lecture	
�  Code	coverage	analysis		

� Are	there	parts	of	the	code	that	are	not	executed	by	any	
test	cases?	

� Used	to	find	inadequacies	in	the	test	suite	
�  In	this	lecture:	Some	examples	in	C	(GCov)	and	func)onal	

programming	
9

Coverage checking

10

Coverage checking

The	structure	of	the	so\ware	is	used	to	determine	
whether	a	set	of	tests	is	a	sufficient/adequate	one	

	

Thus:	

1) Decide	which	structure	to	consider	
2) Decide	upon	coverage	criteria	
3) Find	a	set	of	tests	such	that	this	structure	is	

covered	according	to	the	decided	criteria	
11

Common structures
�  Func5on	coverage	

�  All	func)ons	have	been	executed	

�  Entry/exit	coverage	
�  All	entry	and	exit	points	of	all	func)ons	have	been	executed	

�  Entry	points:	all	calls	to	a	func)on	

�  Exit	points:	each	return	statement	

�  Statement	coverage	(lines	of	code)	
�  All	lines	of	code	have	been	executed	

�  Branch	coverage	(condi)on	coverage)	
�  If:	both	“if”	and	“else”	part,	even	if	no	else	part	
�  While	loop:	both	with	true	and	false	condi)ons		

�  Lazy	logical	ops	(&&	and	||):		first	arguments	both	true	and	false	

�  Path	coverage	
�  All	possible	routes	through	the	code	(combina)on	of	branches)	

�  Infinitely	many	if	there	are	while	loops	(only	feasible	for	small	func)ons)	

How to cover
exceptions?

Not easy, due to
their dynamicity

12

Example (Coverage in Functional Prog.)
�  A	func)on	from	(simple)	ATM	system	

�  Representa)on	of	amount	of	cash	in	machine:	
�  [(100,23),(500,11)]	means	that	machine	contains:	

�  23	bills	of	100kr	
�  11	bills	of	500kr	

�  We	call	it	“pair-notes”	

�  Func)on	to	look	at:	subtract	
�  	subtract	a	number	of	notes	-	notes	remaining	in	the	ATM	
�  subtract(<list_of_pair-notes_to_withdraw>,	<list_of_pair-notes_in_Bank>)		

	 13

subtract([],Notes) ->

 Notes;

subtract([{Value,Nr}|Rest],Notes) ->

 subtract(Rest,subtract2(Value,Nr,Notes)).

subtract2(Value,N,[{Value,M}|Notes]) when M>=N ->

 [{Value,M-N}];

subtract2(Value,N,[{V,M}|Notes]) ->

 [{M,V}|subtract2(Value,N,Notes)].

Test case: subtract([{500,2}],[{100,100},{500,3}]).

Expected output: [{100,100},{500,1}]

Example (Coverage in Functional Prog.)

14

subtract([],Notes) ->

 Notes;

subtract([{Value,Nr}|Rest],Notes) ->

 subtract(Rest,subtract2(Value,Nr,Notes)).

subtract2(Value,N,[{Value,M}|Notes]) when M>=N ->

 [{Value,M-N}];

subtract2(Value,N,[{V,M}|Notes]) ->

 [{M,V}|subtract2(Value,N,Notes)].

Test case: subtract([{500,2}],[{100,100},{500,3}]).

subtract([{500,2}],[{100,100},{500,3}]).

Example (Coverage in Functional Prog.)

15

subtract([],Notes) ->

 Notes;

subtract([{Value,Nr}|Rest],Notes) ->

 subtract(Rest,subtract2(Value,Nr,Notes)).

subtract2(Value,N,[{Value,M}|Notes]) when M>=N ->

 [{Value,M-N}];

subtract2(Value,N,[{V,M}|Notes]) ->

 [{M,V}|subtract2(Value,N,Notes)].

Test case: subtract([{500,2}],[{100,100},{500,3}]).

subtract([],subtract2(500,2,[{100,100},{500,3}])).

Example (Coverage in Functional Prog.)

16

subtract([],Notes) ->

 Notes;

subtract([{Value,Nr}|Rest],Notes) ->

 subtract(Rest,subtract2(Value,Nr,Notes)).

subtract2(Value,N,[{Value,M}|Notes]) when M>=N ->

 [{Value,M-N}];

subtract2(Value,N,[{V,M}|Notes]) ->

 [{M,V}|subtract2(Value,N,Notes)].

Test case: subtract([{500,2}],[{100,100},{500,3}]).

subtract([],subtract2(500,2,[{100,100},{500,3}])).

Example (Coverage in Functional Prog.)

17

subtract([],Notes) ->

 Notes;

subtract([{Value,Nr}|Rest],Notes) ->

 subtract(Rest,subtract2(Value,Nr,Notes)).

subtract2(Value,N,[{Value,M}|Notes]) when M>=N ->

 [{Value,M-N}];

subtract2(Value,N,[{V,M}|Notes]) ->

 [{M,V}|subtract2(Value,N,Notes)].

Test case: subtract([{500,2}],[{100,100},{500,3}]).

subtract([],subtract2(500,2,[{100,100},{500,3}])).

Example (Coverage in Functional Prog.)

18

subtract([],Notes) ->

 Notes;

subtract([{Value,Nr}|Rest],Notes) ->

 subtract(Rest,subtract2(Value,Nr,Notes)).

subtract2(Value,N,[{Value,M}|Notes]) when M>=N ->

 [{Value,M-N}];

subtract2(Value,N,[{V,M}|Notes]) ->

 [{M,V}|subtract2(Value,N,Notes)].

Test case: subtract([{500,2}],[{100,100},{500,3}]).

subtract([],[{100,100}|subtract2(500,2,[{500,3}])]).

Example (Coverage in Functional Prog.)

19

subtract([],Notes) ->

 Notes;

subtract([{Value,Nr}|Rest],Notes) ->

 subtract(Rest,subtract2(Value,Nr,Notes)).

subtract2(Value,N,[{Value,M}|Notes]) when M>=N ->

 [{Value,M-N}];

subtract2(Value,N,[{V,M}|Notes]) ->

 [{M,V}|subtract2(Value,N,Notes)].

Test case: subtract([{500,2}],[{100,100},{500,3}]).

subtract([],[{100,100}|subtract2(500,2,[{500,3}])]).

Example (Coverage in Functional Prog.)

20

subtract([],Notes) ->

 Notes;

subtract([{Value,Nr}|Rest],Notes) ->

 subtract(Rest,subtract2(Value,Nr,Notes)).

subtract2(Value,N,[{Value,M}|Notes]) when M>=N ->

 [{Value,M-N}];

subtract2(Value,N,[{V,M}|Notes]) ->

 [{M,V}|subtract2(Value,N,Notes)].

Test case: subtract([{500,2}],[{100,100},{500,3}]).

subtract([],[{100,100}|subtract2(500,2,[{500,3}])]).

Example (Coverage in Functional Prog.)

21

subtract([],Notes) ->

 Notes;

subtract([{Value,Nr}|Rest],Notes) ->

 subtract(Rest,subtract2(Value,Nr,Notes)).

subtract2(Value,N,[{Value,M}|Notes]) when M>=N ->

 [{Value,M-N}];

subtract2(Value,N,[{V,M}|Notes]) ->

 [{M,V}|subtract2(Value,N,Notes)].

Test case: subtract([{500,2}],[{100,100},{500,3}]).

subtract([],[{100,100}|[{500,3-2}]]).

Example (Coverage in Functional Prog.)

22

subtract([],Notes) ->

 Notes;

subtract([{Value,Nr}|Rest],Notes) ->

 subtract(Rest,subtract2(Value,Nr,Notes)).

subtract2(Value,N,[{Value,M}|Notes]) when M>=N ->

 [{Value,M-N}];

subtract2(Value,N,[{V,M}|Notes]) ->

 [{M,V}|subtract2(Value,N,Notes)].

Test case: subtract([{500,2}],[{100,100},{500,3}]).

Evaluates to

subtract([],[{100,100}|[{500,1}]]).

Example (Coverage in Functional Prog.)

23

subtract([],Notes) ->

 Notes;

subtract([{Value,Nr}|Rest],Notes) ->

 subtract(Rest,subtract2(Value,Nr,Notes)).

subtract2(Value,N,[{Value,M}|Notes]) when M>=N ->

 [{Value,M-N}];

subtract2(Value,N,[{V,M}|Notes]) ->

 [{M,V}|subtract2(Value,N,Notes)].

Test case: subtract([{500,2}],[{100,100},{500,3}]).

output: [{100,100},{500,1}]

All statements and all branches have been executed. Expected output.

Example (Coverage in Functional Prog.)

24

subtract([],Notes) ->

 Notes;

subtract([{Value,Nr}|Rest],Notes) ->

 subtract(Rest,subtract2(Value,Nr,Notes)).

subtract2(Value,N,[{Value,M}|Notes]) when M>=N ->

 [{Value,M-N}];

subtract2(Value,N,[{V,M}|Notes]) ->

 [{V,M}|subtract2(Value,N,Notes)].

Example (Coverage in Functional Prog.)

25

Are	we	happy?	Is	the	program	correct?	

What	happen	with	the	following?	

 Test case: subtract([{500,2}],[{100,5},{500,3}]).

It	will	not	work!!	The	case	[100,100]	was	a	par)cular	case;	we	inverted	values!	

subtract([],Notes) ->

 Notes;

subtract([{Value,Nr}|Rest],Notes) ->

 subtract(Rest,subtract2(Value,Nr,Notes)).

subtract2(Value,N,[{Value,M}|Notes]) when M>=N ->

 [{Value,M-N}|Notes];

subtract2(Value,N,[{V,M}|Notes]) ->

 [{M,V}|subtract2(Value,N,Notes)].

Example (Coverage in Functional Prog.)

26

Are	we	happy	now?	Is	the	program	correct?	

What	happen	with	the	following?	

 Test case: subtract([{100,2}],[{100,100},{500,3}]).

It	will	not	work!!	We	are	“loosing”	the	suffix	of	the	list!	

Coverage (example in C)
void	printPos(int	n)	{		
	prinl("This	is	");		
	if	(n	<	0)	
	 	prinl("not	");		
	prinl("a	posi)ve	integer.\n");		
	return;		

}		
Code originally from Wikipedia

Test case 1

Action: call printPos(-1)

Expected outcome:

”This is not a positive
integer” (printed on stdout)

Coverage: 100% statement,
50% branch, 50% path

Test case 2

Action: call printPos(1)

Expected outcome:

”This is a positive
integer” (printed on stdout)

Coverage: 100% statement,
branch & path (including previous)

Test case 3

Action: call printPos(0)

Expected outcome:

”This is not a positive
integer” (printed on stdout)

Boundary value

Should be: <=

Actually:
else { }

Fails!

27

Are we
happy with
coverage?

Group exercise
�  Come	up	with	pieces	of	code	(in	any	language)	and	a	few	

test	cases	such	that	following	condi)ons	are	met,	or	
mo)vate	why	it	is	impossible:	

1.  100%	branch	coverage,	less	than	100%	path	coverage	

2.  100%	path	coverage,	less	than	100%	statement	coverage	

3.  100%	func)on	coverage,	less	than	100%	exit	point	coverage	

	

Group work: 10 min 28

Suggestions
1:	100%	branch	coverage,	less	than	100%	path	coverage	

void	foo(int	n)	{	

		if(n>0)		

				prinl(”Posi)ve\n”);	

		else	

				prinl(”Not	posi)ve\n”);	

		if(n	%	2)	

				prinl(”Odd\n”);	

		else	

				prinl(”Even\n”);	

}	

Id: Test case 1: pos/odd
Action: call foo(1)
Expected outcome:
 ”Positive” and ”Odd”

Id: Test case 2: neg/even
Action: call foo(-2)
Expected outcome:
 ”Not positive” and ”Even”

Path positive/even
not covered! 29

2:	100%	path	coverage,	less	than	100%	statement	
coverage	

	

int	main(void)	{	

		prinl(”Hello	world\n”);	

		return	0;	

		prinl(”Unreachable	code\n”);		}	

	

Id: Test case 1
Action: run main
Expected outcome:
 ”Hello world” printed

This statement is not
covered!

Suggestions

30

3:	100%	func5on	coverage,	less	than	100%	exit	point	
coverage	
	

int	abs(int	n)	{	

		if(n	<	0)	

				return	–n;	

		return	n;	

}	

Id: abs/1
Action: call abs(-17)
Expected outcome:
 returns 17

Didn’t cover
this exit point

Suggestions

31

White box test design
Strategy	for	using	coverage	measure:	

1.  Design	test	cases	using	black	box	test	design	techniques	

2.  Measure	code	coverage	

3.  Design	test	cases	by	inspec)ng	the	code	to	cover	unexecuted	
code	

100%	coverage	does	not	mean	there	are	no	errors	le\!	

So,	code	coverage	should	be	seen	as	complementary	method	–		
It	cannot	do	the	thinking	for	you	

However,	coverage	analysis	catches	aspects	that	are	otherwise	easily	
forgouen	

32

Adding test cases after
coverage analysis

�  The	new	test	cases	should	s)ll	be	black	box	test	
cases,	not	referring	to	the	code	

Id: abs/2
Purpose: Execute abs on negative integer
Action: call abs(-17)
Expected outcome: Call returns 17

Id: abs/2
Purpose: Cover line 3 of abs
Action: call abs(-17)
Expected outcome: Line 3 executed

Good test case:

Bad test case: Refers to code

33

Practical coverage analysis

In	order	to	measure	coverage,	most	languages	require	a	
compile	flag	to	enable	keeping	track	of	line	numbers	
during	execu)on	

Consequences:	

�  Performance	changes,	hence	5ming	related	faults	may	
be	undiscoverable	

� Memory	requirements	change,	hence	one	may	
experience	problems	running	in	embedded	devices	

There	are	a	lot	of	tools	available	for	many	languages	 34

Coverage vs Profiling

Both	methods	count	execu)ons	of	en))es,	but	
purpose	is	different	

�  Coverage	tool:	find	out	which	en))es	have	been	
executed,	to	establish	confidence	in	verifica)on	

�  Profiler:	iden)fy	boulenecks	and	help	programmer	
improve	performance	of	so\ware	

35

Example: Gcov (C)
The program avg (short for “average”) reads a text file, whose name is given as a command
line argument, containing a number of integers, and reports the average value of all the
integers. The program has been implemented in C (see below and next page), and the
following small test suite has been developed by a programmer to start testing the system:

Test case avg.1: Normal integers
Prerequisites: The file avgtest1.txt contains “10 15 35”
Action: Run ./avg avgtest1.txt
Expected outcome: The program prints “The average is 20”

Test case avg.2: Negative numbers
Prerequisites: The file avgtest2.txt contains “-2 2 -6”
Action: Run ./avg avgtest2.txt
Expected outcome: The program prints “The average is -2”

Executing this test suite together with gcov reveals that there is untested code, the tool giving
the message “Lines executed: 63.33% of 30”. The actual output from gcov can be seen in
next slide.

NOTE: The uncovered statements are those lines preceded with ####

36

Example: GCov
-: 1:#include <stdio.h>
 -: 2:#include <stdlib.h>
 -: 3:
 -: 4:// readInts: read a file containing integers, and return their
 -: 5:// sum and the number of integers read.
 -: 6:
 -: 7:#define READINTS_SUCCESS 0 // Indicates success
 -: 8:#define READINTS_FILEERR 1 // the file could not be read
 -: 9:#define READINTS_SYNTAXERR 2 // syntax error in file
 -: 10:
 2: 11:int readInts(const char* filename, int* sumRslt, int* lengthRslt){
 2: 12: FILE* file = fopen(filename, "r");
 2: 13: if(!file)
 #####: 14: return READINTS_FILEERR;
 -: 15:
 2: 16: *sumRslt=0;
 2: 17: *lengthRslt=0;
 -: 18: while(1) {
 -: 19: int theInt;
 8: 20: if(fscanf(file, "%d", &theInt) == 1) {
 -: 21: // Successfully read integer
 6: 22: (*sumRslt) += theInt;
 6: 23: (*lengthRslt)++;
 -: 24: } else {
 -: 25: // Could not read integer. End of file or syntax error?
 2: 26: if(feof(file)) {
 -: 27: // End of file
 2: 28: fclose(file);
 2: 29: return READINTS_SUCCESS;
 -: 30: } else {
 -: 31: // Syntax error
 #####: 32: fclose(file);
 #####: 33: return READINTS_SYNTAXERR;
 -: 34: }
 -: 35: }
 6: 36: }
 -: 37:}
 -: 38:

 2: 39:int main(int argc, char**argv) {
 -: 40: int sum, length;
 -: 41: const char* filename;
 -: 42:
 2: 43: if(argc < 2) {
 #####: 44: printf("Error: missing argument\n");
 #####: 45: exit(EXIT_FAILURE);
 -: 46: }
 2: 47: filename = argv[1];
 -: 48:
 2: 49: switch(readInts(filename, &sum, &length)) {
 -: 50: case READINTS_FILEERR:
 #####: 51: printf("Error reading file %s\n", filename);
 #####: 52: exit(EXIT_FAILURE);
 -: 53:
 -: 54: case READINTS_SYNTAXERR:
 #####: 55: printf("Syntax error in file %s\n", filename);
 #####: 56: exit(EXIT_FAILURE);
 -: 57:
 -: 58: case READINTS_SUCCESS:
 -: 59: default:
 -: 60: break;
 -: 61: }
 -: 62:
 2: 63: if(length==0) {
 #####: 64: printf("Error: no integers found in file %s\n",
filename);
 #####: 65: exit(EXIT_FAILURE);
 -: 66: }
 -: 67:
 2: 68: printf("The average is %d\n", sum / length);
 -: 69:
 2: 70: return EXIT_SUCCESS;
 -: 71:} 37

Group exercise

�  Provide	addi)onal	test	cases	so	that	all	cases	
together	yield	100%	statement	coverage	

�  Write	complete	test	cases	as	shown	in	the	test	cases	
above,	and	indicate	which	lines	each	test	case	cover		

	

Group work: 10 min 38

Exercise: Proposed solution
--To	cover	l.64-65	(avgtest3.txt	is	an	empty	file	-	Test	
case	avg3:		

Prerequisites:	The	file	avgtest3.txt	exists	but	is	
empty	

Ac)on:	./avg	avgtest3.txt	

Expected	outcome:	An	error	is	reported,	sta)ng	that	
the	input	is	empty	

	

-	To	cover	l.32-33	and	55-56	-	Test	case	avg4:		

Prerequisites:	avgtest4.txt	contains	a	list	of	non-
integers	

Ac)on:	./avg	avgtest4.txt	

Expected	outcome:	An	error	message	is	given	that	
there	is	a	syntax	error	

		
Any problem understanding the

solution? Try it yourself with GCoV!

- -	To	cover	l.14	and	51-52	-	Test	case	avg5:		

Prerequisites:	Call	the	func)on	with	an	
argument,	not	a	file	

Ac)on:		-./avg	"asdfdf"		(or	./avg	
non_exis)ng_file.txt)	

Expected	outcome:	An	error	reading	file	
could	be	given	

-	To	cover	l.44-45	Test	case	avg5:	

Prerequisites:	None	

Ac)on:	./avg		

Expected	outcome:	Error	missing	argument	is	
given		

39

TEST

Terminology

 Verification Validation

Code is executed

user

Dynamic Static
Artifact Inspection

manual automatic
White box

Coverage

Black box ……
Several

techniques

40

Tes)ng:	The	Bigger	Picture	
� Monday	March	27	

�  NOTE:	Lecture	starts	at	8:30!	

Next lecture

41

