Model-Based Testing

(DIT848 / DAT261)
Spring 2017

Lecture 3
White Box Testing - Coverage

Gerardo Schneider
Dept. of Computer Science and Engineering
Chalmers | University of Gothenburg

Some slides based on material by Magnus Bjork, Thomas Arts and Ian Somerville

What have we seen so far?

® V&V: Validation & Verification
® The V model

® Test levels
® Black box testing

® (Extended) Finite State Machines

ny question?

~

Today's topic

Verification

Static

Artifact Inspection

manual automatic
« Static analysis

* Formal method.

White box testing

Do I need more test cases?

® | think | have test cases for all aspects of the
specification,

® |’ve added test cases for boundary values,
® ..guessed error values,

® ..and performed 10.000 random test cases.

Is that enough?

Do I need more test cases?

® The bad:

® There is no way to know for certain

® The good:
® There are techniques that can help us

® |dentify some aspects that may otherwise go unnoticed
® Give some criteria for “enough”

Coverage

techniques

Black box and White box testing

Also called

Structural testing or
Glass box testing

@,
White box testing: Test tactic in which the test l
: : software
object is addressed as a box one can open 2%y
Ay DT
A test is performed by sending a sequence of input l

values and observing the output and internals
while explicitly using knowledge about the test
object internals

What white box testing is not

® White box testing is (typically) NOT:
® Black box test cases that refer to internal constructs

Id: calc.h/pressPlus/1
Purpose: verifying that the correct operation is stored

Precondition: state is a CalcStatePtr pointing to a valid
calculator state

Action: call pressPlus(state)
Expected outcome: state->op = Plus

Refers to internal
representation,
not interface

e Drawbacks of test cases like this:
— Test properties not in specification
— Fail if internal representation is changed
— And when they fail, it may be hard to understand why/where

...but sometimes they may be necessary
' f internal functions

What white box testing is

* ‘Normal” white box testing is:

® Black box testing, combined with tools that analyze
implementation of specific properties

® White box techniques covered in this lecture
® Code coverage analysis

® Are there parts of the code that are not executed by any
test cases?

® Used to find inadequacies in the test suite

® |n this lecture: Some examples in C (GCov) and functional
' ramming

Coverage checking

Coverage checking

The structure of the software is used to determine
whether a set of tests is a sufficient/adequate one

Thus:
1) Decide which structure to consider

2) Decide upon coverage criteria

3) Find a set of tests such that this structure is
vered according to the decided criteria

Common structures

Function coverage

® All functions have been executed

Entry/exit coverage

® All entry and exit points of all functions have been executed
Entry points: all calls to a function

Exit points: each return statement) .
How to cover
Statement coverage (lines of code) exceptions?

® Alllines of code have been executed /=

Not easy, due to
their dynamicity

Branch coverage (condition coverage)
® |f: both “if” and “else” part, even if no else part
® While loop: both with true and false conditions

® |azylogical ops (&& and | |): first arguments both true and false

Path coverage

® All possible routes through the code (combination of branches)

® |nfinitely many if there are while loops (only feasible for small functions)

Example (Coverage in Functional Prog.)

® A function from (simple) ATM system

® Representation of amount of cash in machine:
® [(100,23),(500,11)] means that machine contains:
® 23 bills of 100kr
® 11 bills of 500kr
® We call it “pair-notes”

® Function to look at: subtract

® subtract a number of notes - notes remaining in the ATM

® subtract(<list_of pair-notes_to_withdraw>, <list_of pair-notes_in_Bank>

Example (Coverage in Functional Prog.)

subtract ([],Notes) ->
Notes;

subtract ([{Value,Nr} |Rest],Notes) ->
subtract (Rest, subtract2 (Value,Nr, Notes)) .

subtract?2 (Value, N, [{Value,M} |Notes]) when M>=N ->
[{Value,M-N}];

subtract?2 (Value,N, [{V,M} |Notes]) ->
[{M,V} |subtract2 (Value, N, Notes)].

Test case: subtract ([{500,2}], [{100,100}, {500,3}1) .

_Expected output: [{100,100}, {500,1}]

— .

Example (Coverage in Functional Prog.)

subtract ([],Notes) ->
Notes;

subtract ([{Value,Nr} |Rest],Notes) ->
subtract (Rest, subtract2 (Value,Nr, Notes)) .

subtract?2 (Value, N, [{Value,M} |Notes]) when M>=N ->
[{Value,M-N}];

subtract?2 (Value,N, [{V,M} |Notes]) ->
[{M,V} |subtract2 (Value, N, Notes)].

Test case: subtract ([{500,2}], [{100,100}, {500,3}1) .

Example (Coverage in Functional Prog.)

subtract ([],Notes) ->
Notes;

subtract ([{Value,Nr} |Rest],Notes) ->
subtract (Rest, subtract2 (Value,Nr, Notes)) .

subtract?2 (Value, N, [{Value,M} |Notes]) when M>=N ->
[{Value,M-N}];

subtract?2 (Value,N, [{V,M} |Notes]) ->
[{M,V} |subtract2 (Value, N, Notes)].

Test case: subtract ([{500,2}], [{100,100}, {500,3}1) .

Example (Coverage in Functional Prog.)

subtract ([],Notes) ->
Notes;

subtract ([{Value,Nr} |Rest],Notes) ->
subtract (Rest, subtract2 (Value,Nr, Notes)) .

subtract?2 (Value, N, [{Value,M} |Notes]) when M>=N ->
[{Value,M-N}];

subtract?2 (Value, N, [{V,M} |Notes]) ->
[{M,V} |subtract2 (Value, N, Notes)].

Test case: subtract ([{500,2}], [{100,100}, {500,3}1) .

Example (Coverage in Functional Prog.)

subtract ([],Notes) ->
Notes;

subtract ([{Value,Nr} |Rest],Notes) ->
subtract (Rest, subtract2 (Value,Nr, Notes)) .

subtract?2 (Value, N, [{Value,M} |Notes]) when M>=N ->
[{Value,M-N}];

subtract?2 (Value,N, [{V,M} |Notes]) ->
[{M,V} |subtract2 (Value, N, Notes)].

Test case: subtract ([{500,2}], [{100,100}, {500,3}1) .

Example (Coverage in Functional Prog.)

subtract ([],Notes) ->
Notes;

subtract ([{Value,Nr} |Rest],Notes) ->
subtract (Rest, subtract2 (Value,Nr, Notes)) .

subtract?2 (Value, N, [{Value,M} |Notes]) when M>=N ->
[{Value,M-N}];

subtract?2 (Value,N, [{V,M} |Notes]) ->
[{M,V} |subtract?2 (Value, N, Notes)].

Test case: subtract ([{500,2}], [{100,100}, {500,3}1) .

Example (Coverage in Functional Prog.)

subtract ([],Notes) ->
Notes;

subtract ([{Value,Nr} |Rest],Notes) ->
subtract (Rest, subtract2 (Value,Nr, Notes)) .

subtract?2 (Value, N, [{Value,M} |Notes]) when M>=N ->
[{Value,M-N}];

subtract?2 (Value,N, [{V,M} |Notes]) ->
[{M,V} |subtract?2 (Value, N, Notes)].

Test case: subtract ([{500,2}], [{100,100}, {500,3}1) .

Example (Coverage in Functional Prog.)

subtract ([],Notes) ->
Notes;

subtract ([{Value,Nr} |Rest],Notes) ->
subtract (Rest, subtract2 (Value,Nr, Notes)) .

subtract?2 (Value, N, [{Value,M} |Notes]) when M>=N ->
[{Value,M-N}];

subtract?2 (Value,N, [{V,M} |Notes]) ->
[{M,V} |subtract2 (Value, N, Notes)].

Test case: subtract ([{500,2}], [{100,100}, {500,3}1) .

Example (Coverage in Functional Prog.)

subtract ([],Notes) ->
Notes;

subtract ([{Value,Nr} |Rest],Notes) ->
subtract (Rest, subtract2 (Value,Nr, Notes)) .

subtract?2 (Value, N, [{Value,M} |Notes]) when M>=N ->
[{Value,M-N}];

subtract?2 (Value,N, [{V,M} |Notes]) ->
[{M,V} |subtract2 (Value, N, Notes)].

Test case: subtract ([{500,2}], [{100,100}, {500,3}1) .

Example (Coverage in Functional Prog.)

subtract ([],Notes) ->
Notes;

subtract ([{Value,Nr} |Rest],Notes) ->
subtract (Rest, subtract2 (Value,Nr, Notes)) .

subtract?2 (Value, N, [{Value,M} |Notes]) when M>=N ->
[{Value,M-N}];

subtract?2 (Value,N, [{V,M} |Notes]) ->
[{M,V} |subtract2 (Value, N, Notes)].

Test case: subtract ([{500,2}], [{100,100}, {500,3}1) .

Example (Coverage in Functional Prog.)

subtract ([],Notes) ->
Notes;

subtract ([{Value,Nr} |Rest],Notes) ->
subtract (Rest, subtract2 (Value,Nr, Notes)) .

subtract?2 (Value, N, [{Value,M} |Notes]) when M>=N ->
[{Value,M-N}];

subtract?2 (Value,N, [{V,M} |Notes]) ->
[{M,V} |subtract2 (Value, N, Notes)].

Test case: subtract ([{500,2}], [{100,100}, {500,3}1) .

-Uff[{lOO,lOO},{SOO,l}]

Example (Coverage in Functional Prog.)

Are we happy? Is the program correct?
What happen with the following?
Test case: subtract ([{500,2}]1,[{100,5}, {500,3}1) .

It will not work!! The case [100,100] was a particular case; we inverted values!

subtract ([],Notes) ->
Notes;

subtract ([{Value,Nr} |Rest],Notes) ->
subtract (Rest, subtract2 (Value, Nr,Notes)) .

subtract?2 (Value, N, [{Value,M} |Notes]) when M>=N ->
[{Value,M-N}];

= tZ(Value,N,[{V,M}INotes]) ->

Example (Coverage in Functional Prog.)

Are we happy now? Is the program correct?
What happen with the following?
Test case: subtract ([{100,2}]1, {100,100}, {500,3}1) .

It will not work!! We are “loosing” the suffix of the list!

subtract ([],Notes) ->
Notes;

subtract ([{Value,Nr} |Rest],Notes) ->
subtract (Rest, subtract2 (Value, Nr,Notes)) .

subtract?2 (Value, N, [{Value,M} |Notes]) when M>=N ->
[{Value,M-N} |Notes] ;
e alue, N, [{V, M} |[Notesl) —>

Coverage (example in C

void printPos(int n) { 0@ hagrr?yv\\j\ﬁth
prinﬁ("Th&s")’ Test case 1 coverage?
. Actually: Action: call printPos(-1)
| (n < O) Expected outcome:
printf("not "); "This is not a positive

. . _ integer” (printed on stdout)
printf("a positive integer.\n");
Coverage: 100% statement,

. 0 0
retu mn, Code originally from Wikipedia 50% branch, 50% path

} Test case 2

Test case 3 Action: call printPos(1)

Action: call printPos(0)
Expected outcome:
E :
geecioad outcomie "This is a positive

"This is not a positive integer” (printed on stdout)
integer” (printed on stdout) -
Coverage: 100% statement,

Boundary value branch & path (including previous)

Group exercise

Come up with pieces of code (in any language) and a few
test cases such that following conditions are met, or
motivate why it is impossible:

. 100% branch coverage, less than 100% path coverage

. 100% path coverage, less than 100% statement coverage

. 100% function coverage, less than 100% exit point coverage

Suggestions

1: 100% branch coverage, less than 100% path coverage
void foo(int n) {

if(n>0)
Id: Test case 1: pos/odd
printf("Positive\n”); Action: call foo(1)
Expected outcome:

else
"Positive” and "Odd”

printf(” Not positive\n”);

if(n % 2) Id: Test case 2: neg/even
)) Action: call foo(-2)
printf(“Odd\n"); Expected outcome:

"Not positive” and "Even’

else

intf("Even\n”);

Suggestions

2: 100% path coverage, less than 100% statement
coverage

Id: Test case 1

. . i Action: run main
int main(void) {

Expected outcome:
"Hello world” printed

printf("Hello world\n”);

printf("Unreachable code\n”); } :

Suggestions

3: 100% function coverage, less than 100% exit point

coverage
Id: abs/1
. . Action: call abs(-17)
Int abs(lnt n) { Expected outcome:
returns 17
if(n < 0)
return —n;

White box test design

Strategy for using coverage measure:
1. Design test cases using black box test design techniques
2. Measure code coverage

3. Design test cases by inspecting the code to cover unexecuted
code

100% coverage does not mean there are no errors left!

So, code coverage should be seen as complementary method —
It cannot do the thinking for you

ver, coverage analysis catches aspects that are otherwis

Adding test cases after
coverage analysis

® The new test cases should still be black box test

cases, not referring to the code
Good test case:

Bad test case: Refers to code

Practical coverage analysis

In order to measure coverage, most languages require a
compile flag to enable keeping track of line numbers

during execution

Consequences:

® Performance changes, hence timing related faults may
be undiscoverable

® Memory requirements change, hence one may
~_experience problems running in embedded devices

ools avail

Coverage vs Profiling

Both methods count executions of entities, but
purpose is different

® Coverage tool: find out which entities have been
executed, to establish confidence in verification

® Profiler: identify bottlenecks and help programmer
improve performance of software

Example: Gcov (C)

The program avg (short for “average”) reads a text file, whose name is given as a command
line argument, containing a number of integers, and reports the average value of all the
integers. The program has been implemented in C (see below and next page), and the
following small test suite has been developed by a programmer to start testing the system:

Test case avg.1: Normal integers

Prerequisites: The file avgtest1.txt contains “10 15 35”
Action: Run ./avg avgtest1.txt

Expected outcome: The program prints “The average is 20"

Test case avg.2: Negative numbers

Prerequisites: The file avgtest2.txt contains “-2 2 -6”
Action: Run ./avg avgtest2.txt

Expected outcome: The program prints “The average is -2”

Executing this test suite together with gcov reveals that there is untested code, the tool giving
the message “Lines executed: 63.33% of 30”. The actual output from gcov can be seen in
next slide.

NOTE: The uncovered statements are those lines preceded with ####

Example: GCov

-: 1:#include <stdio.h>

2:#include <stdlib.h>

3:

4:// readInts: read a file containing integers, and return their
5:// sum and the number of integers read.

6.

7:#define READINTS_SUCCESS 0 // Indicates success
8:#define READINTS_FILEERR 1 // the file could not be read
9:#define READINTS_SYNTAXERR 2 // syntax error in file

10:

11:int readInts(const char* filename, int* sumRsilt, int* lengthRslt){
12: FILE* file = fopen(filename, "r");

13: if(!file)

#HHHE: 14: return READINTS_FILEERR;

- 15
2: 16: *sumRslt=0;
2: 17: *lengthRslt=0;
-1 18: while(1) {
- 19: int thelnt;
8: 20: if(fscanf(file, "%d", &thelnt) == 1) {
-: 21: /] Successfully read integer
6: 22: (*sumRsilt) += thelnt;
6: 23: (*lengthRslt)++;
-1 24: Yelse{
-2 25: /[Could not read integer. End of file or syntax error?
2: 26: if(feof(file)) {
- 2T /I End of file
2: 28: fclose(file);
2: 29: return READINTS_SUCCESS;
- 30: }else{
- 31: /I Syntax error

#HHHE:. 32: fclose(file);

#HHHAE 33: return READINTS_SYNTAXERR;
- 34}
- 35}
6: 36: }
- 373}

: 38:

2: 39:int main(int argc, char**argv) {

-2 40: int sum, length;

- 41: const char* filename;

- 42:

2: 43: if(argc < 2) {
#HHHHE. 44 printf("Error: missing argument\n");
#HEHHE 45; exit(EXIT_FAILURE);

- 46: }

2: 47: filename = argv[1];

-1 48:

2: 49: switch(readInts(filename, &sum, &length)) {

-. 50: case READINTS_FILEERR:
#HHHHE. 51: printf("Error reading file %s\n", filename);
#HHHE 52: exit(EXIT_FAILURE);

-: 53

-. 54: case READINTS_SYNTAXERR:
#H##: 55: printf("Syntax error in file %s\n", filename);
#HEHH#E: 56: exit(EXIT_FAILURE);

-2 87

- 58: case READINTS_SUCCESS:

- 59: default:

- 60: break;

- 61:}

-1 62:

2: 63: if(length==0) {
#HHHE 64: printf("Error: no integers found in file %s\n",

filename);

#HHHHE 65: exit(EXIT_FAILURE);
- 66: }
- 67:
2: 68: printf("The average is %d\n", sum / length);
- 69:
2: 70: return EXIT_SUCCESS;
- 713}

Group exercise

® Provide additional test cases so that all cases
together yield 100% statement coverage

® Write complete test cases as shown in the test cases
above, and indicate which lines each test case cover

Exercise: Proposed solution

-To cover |.64-65 (avgtest3.txt is an empty file - Test
case avg3:

Prerequisites: The file avgtest3.txt exists but is
empty

Action: ./avg avgtest3.txt

Expected outcome: An error is reported, stating that
the input is empty

- To cover |.32-33 and 55-56 - Test case avg4:

Prerequisites: avgtest4.txt contains a list of non-
integers

Action: ./avg avgtest4.txt

Expected outcome: An error message is given that
there is a syntax error

- To cover |.14 and 51-52 - Test case avg5:

Prerequisites: Call the function with an
argument, not a file

Action: -./avg "asdfdf" (or./avg
non_existing_file.txt)

Expected outcome: An error reading file
could be given

- To cover 1.44-45 Test case avg5:
Prerequisites: None
Action: ./avg

Expected outcome: Error missing argument is

given ‘

Any problem understanding the
solution? Try it yourself with GCoV!

Terminology

Verification

Static

Artifact Inspection

S

manual automatic

Next lecture

Testing: The Bigger Picture

® Monday March 27

® NOTE: Lecture starts at 8:30!

