
Model-Based Testing
(DIT848 / DAT261)

Spring 2017
Lecture 1

Overview of Verification and Validation

Gerardo Schneider
gerardo@cse.gu.se

Dept. of Computer Science and Engineering
Chalmers | University of Gothenburg

Some slides based on material by Magnus Björk, Thomas Arts and Ian Somerville 1

Lecture 1

�  Introduce	so,ware	verifica2on	and	valida2on	and	discuss	
the	dis2nc2on	between	them	

�  Introduce	link	between	development	and	test	

	

Lots	of	new	words,	pu<ng	them	into	context	

2

Discuss: What is SW
quality?

* Downloaded from youtube 3 Launch of Windows Vista (2006)

Quality aspects considered in this
course

High	priority	

�  Correctness:		
�  The	program	should	fulfill	its	specifica2on	
�  The	program	should	not	malfunc2on	(crash,	undesired	side	effects...)	

Lower	priority	

�  Suitability	

�  Usefulness	

�  Code	maintainability	/	standards	conformance	

�  Document	quality	
4

Product	development	costs	

	

	

How	much	do	you	think	tes2ng	“costs”?		

	

5

Motivation

Motivation
Product	development	costs	(Sommerville)	

	

	

	

	

The	more	mature	innova2ons	get,	the	more	important	their	quality	

	Example:	GPS	receiver	(high	expecta2ons	on	accuracy)	

“So,ware	quality”	is	ge<ng	a	compe22ve	dis2nc2on	

The	company	being	able	to	test	beSer	for	less	money	gets	the	market	

	

specification development System testing

> 50%
0% 100%

6

Bugs are serious
Ariane	5	flight	501	(1996)	

�  Error	in	a	code	conver2ng	64-
bit	floa2ng-point	numbers	
into	16-bit	signed	integer:	It	
triggered	an	overflow	
condi2on		

�  Rocket	disintegrates	40	
seconds	a,er	launch	

�  Price:	~USD	370M	in	
equipment	

•  Therac-25	Radia2on	therapy	machine	
–  Possible	to	configure	the	Therac-25	so	the	electron	beam	would	fire	in	

high-power	mode	but	with	the	metal	X-ray	target	out	of	posi2on	
–  Source	of	error:	a	“race	condi2on”	
–  Price:	5	people	killed	by	massive	overdoses	

7
More recent bugs: http://www.tricentis.com/blog/2015/05/05/software-failures-of-2015-quarter-one/

Verification & Validation

�  Verifica2on	

	"Are	we	building	the	product	right”	

The	so,ware	should	conform	to	its	specifica/on	

�  Valida2on	

		"Are	we	building	the	right	product”	

The	so,ware	should	do	what	the	user	really	requires	

8

V model [cf Spillner 2000]

Requirements

Specification

Architectural
Design

Detailed Design

Coding

Unit Test

Integration
Test

System Test

Acceptance
Test

Validation

Verification

Not necessarily
chronological.
Usually built up
iteratively

We don’t build
software like that
today! It shows
relation between
development and
verification 9

How does it work in practice?
�  This	is	what	we	will	see	in	this	course…	

�  Remember	that	the	V-model	is	useful	to	show	how	
development	and	test	are	related	conceptually	
�  Not	as	a	guideline	on	how	so,ware	should	be	developed	
�  In	prac2ce,	different	ways	to	organize/perform	tes2ng	

�  We	will	see	”tradi2onal”	ways	of	performing	tes2ng	

�  And	obviously	Model-Based	Tes2ng		(MBT)	

	 10

Dynamic and static
verification

DYNAMIC		
	

�  So?ware	tes/ng	&	run2me	verifica2on	
�  Concerned	with	exercising	and	observing	behaviour	
�  The	system	is	executed	(with	test	data	or	in	a	real	environment)	and	its	

opera2onal	behaviour	is	observed	

STATIC		
	

�  So?ware	inspec/ons	&	other	model-based	techniques	(sta2c	analysis/
verifica2on,	model	checking,	etc)	
�  Concerned	with	analysis	of	the	system	before	execu2on	(source	code	or	

model)	
�  May	be	supplemented	by	tool-based	document	and	analysis	

11

Error, defect, failure…
�  Error		
A	human	ac2on	that	produces	an	incorrect	result	

�  Mistakes	in	syntax,	wrong	invoca2on,	wrong	ini2aliza2on	of	variables,	…	

�  Defect	(or	bug,	or	fault)	
A	flaw	in	a	component/so,ware	that	might	cause	the	system	to	fail	to	
perform	its	required	func2on	
If	encountered	during	execu2on:	might	cause	a	failure	

�  Incorrect	statement	or	data	defini2on	

�  Failure		

Devia2on	of	the	component/so,ware	from	its	expected	result	
�  The	program	crashes,	the	wrong	result	is	obtained	

12 According to the “International Software Testing Qualification Board” (ISTQB)
Warning: Not everybody agrees with the above distinction!

�  It’s	a	whole	life-cycle	process		
�  V&V	must	be	applied	at	each	stage	in	the	so,ware	process	
�  So,	V&V	and	development	processes	depend	on	each	other	

	

�  Has	two	principal	objec2ves	
�  The	discovery	of	defects	in	a	system		
�  The	assessment	of	whether	or	not	the	system	is	useful	and	

useable	in	an	opera2onal	situa2on	

13

V&V process

V&V process

Goals	

�  Verifica2on	and	valida2on	should	increase	confidence	on	that	the	
so,ware	fits	the	intended	purpose	

�  This	does	NOT	mean	completely	free	of	defects	

�  Rather,	it	must	be	good	enough	for	its	intended	use	and	the	type	
of	use	will	determine	the	degree	of	confidence	that	is	needed	

V&V process
Confidence	on	Sw	correctness	

depends	on		

�  So,ware	func2on	
�  How	cri2cal	the	so,ware	is	to	an	

organiza2on	

�  User	expecta2ons	
�  Users	may	have	low	expecta2ons	of	

certain	kinds	of	so,ware	

�  Marke2ng	environment	
�  Ge<ng	a	product	to	market	early	may	be	

more	important	than	finding	defects	in	
the	program	

�  Patchability	
�  Can	sold	units	be	upgraded	easily?	

Requirements

Specification

Architectural
Design

Detailed Design

Coding

Unit Test

Integration
Test

System Test

Acceptance
Test

Discussion
Software Testing in Automobiles

Discuss	so,ware	in	the	car	

Discuss	for	several	so,ware	
components:	

�  How	cri2cal	they	are	

�  What	the	users	expect	

�  How	the	marke2ng	environment	
looks	like	

�  Whether	upgrades	are	feasible	

	

16

V&V planning
�  Careful	planning	is	required	to	get	the	most	out	of	sta2c	and	

dynamic	verifica2on	

�  Planning	should	start	early	in	the	development	process	

�  The	plan	should	iden2fy	the	balance	between	dynamic	and	
sta/c	techniques	(e.g.,	between	tes2ng	and	inspec2on)	

�  V&V	planning	is	about	defining	standards	for	the	V&V	process,	
rather	than	describing	product	tests	

�  The	more	cri?cal	the	system,	the	more	effort	should	be	
devoted	to	sta$c	analysis/verifica$on	

	
17

V&V planning
Plan	V&V	process	

�  Which	ac2vi2es?	

�  Which	results	for	each	ac2vity?	

�  Who	performs	ac2vity?	

V-model	helps	connec2ng	
test	ac2vi2es	to	development	ac2vi2es	

	

Each	development	ac2vity	corresponds	to	a	test	level	

Requirements

Specification

Architectural
Design

Detailed Design

Coding

Unit Test

Integration
Test

System Test

Acceptance
Test

18

Test levels
Test	level:	A	group	of	test	ac2vi2es	that	are	organized	and	managed	

together	

	

A	test	level	is	linked	to	responsibili2es	in	a	project	

	

For	each	level,	it	is	important	to	test	what	was	not	possible	to	verify	
or	validate	on	lower	levels	

	

Different	methods	and	techniques	may	apply	to	each	level		

	

	
19

Verification and Validation

Requirements

Specification

Architectural
Design

Detailed Design

Coding

Unit Test

Integration
Test

System Test

Acceptance
Test

20

Verification and Validation

Specification System Test

Validation
Dynamic Verification

System V&V
planning

Static verification

Use of
Formal

Methods?

21

Dynamic verification
�  Tes2ng	can	reveal	the	presence	of	errors	NOT	their		

absence	(Dijkstra	1960’s)	

�  The	“only”	valida2on	technique	for	non-func2onal	requirements	
as	the	so,ware	has	to	be	executed	to	see	how	it	behaves	
�  Non-exhaus2ve	

�  Should	be	used	in	conjunc2on	with	sta2c	verifica2on	to	
approximate	a	full	V&V	coverage	

22

Types of testing (one possible classification)
�  Defect	tes2ng	

�  Tests	designed	to	discover	system	defects	
�  A	successful	defect	test	is	one	which	reveals	the	presence	of	defects	in	a	

system	

�  Valida2on	tes2ng	
�  Quality	assurance	process	carried	out	before	the	so,ware	is	ready	for	

release	
�  To	show	that	the	so,ware	meets	the	requirements	given	by	the	user	

�  Acceptance	by	the	end	user	
�  A	successful	test	is	one	that	shows	that	requirements	have	been	

properly	implemented	

23

Testing and debugging
�  Defect	tes2ng	and	debugging	are	dis2nct	processes	

�  Tes2ng	is	concerned	with	establishing	the	existence	of	defects	in	a	
program	

�  Debugging	is	concerned	with	loca2ng	and	repairing	these	errors	
�  Debugging	involves	formula2ng	a	hypothesis	about	program	behaviour	then	tes2ng	

these	hypotheses	to	find	the	errors	

Cost	of	debugging	is	o,en	included	in	costs	for	so,ware	tes2ng	

24

Software inspections
So,ware	inspec2on	is	a	manual	sta2c	analysis	method	

�  It	involves	people/tools	examining	the	source	representa2on	with	the	aim	of	
discovering	anomalies	and	defects	

�  Inspec2ons	can	take	place	on	all	development	levels,	no	maSer	the	formality	
of	the	sources	

�  Inspec2ons	do	not	require	execu2on	of	a	system	so	may	be	used	before	
implementa2on	

�  They	may	be	applied	to	any	representa2on	of	the	system	(requirements,	
design,	configura2on	data,	test	data,	etc.)	

�  Shown	to	be	an	effec2ve	technique	for	discovering	program	errors	

XP:	pair	programming		

25

Inspection success

�  Many	different	defects	may	be	discovered	in	a	single	inspec2on	
�  In	tes2ng,	one	defect	may	mask	another	so	several	execu2ons	are	

required	

�  They	reuse	domain	and	programming	knowledge	so	reviewers	
are	likely	to	have	seen	the	types	of	error	that	commonly	arise	

�  Incomplete	versions	of	a	system	can	be	inspected	without	extra	
cost	

�  You	can	look	for	inefficiencies,	poor	programming	style,	etc	

26

Inspections and testing
�  Inspec2ons	and	tes2ng	are	complementary	and	not	opposing	

verifica2on	techniques	

�  Both	should	be	used	during	the	V&V	process	

�  Inspec2ons	can	check	(par2al)	conformance	with	a	
specifica2on	but	not	conformance	with	the	customer’s	real	
requirements	

�  Inspec2ons	cannot	check	non-func2onal	characteris2cs	such	
as	performance,	usability,	etc.	

�  But	inspec2ons	can	find	other	non-func2onal	characteris2cs	
such	as	standards	compliance	of	code	

27

Verification and
Formal Methods

�  Formal	methods	can	be	used	when	a	mathema2cal	
specifica2on	of	the	system	is	known	

�  They	are	the	ul/mate	verifica2on	technique	
�  Why	not	use	FM	instead	of	tes?ng?	

	

�  They	involve	detailed	mathema2cal	analysis	of	the	
specifica2on	and	may	develop	formal	arguments	that	a	
program	conforms	to	its	mathema2cal	specifica2on	

28

Usually
requires highly

specialized
engineers!

(to model and
interpret
results)

Typical testing methods on each
level

�  Unit	tests:	
�  Each	programmer	required	to	write	unit	tests	for	own	code,	organized	in	

automa2cally	executable	test	suites	
�  Automa2c	sta2c	analysis/verifica2on	(lint/splint-like)	
�  Manual	code	inspec2ons	

�  Integra2on	tests:	
�  Write	test	cases	that	monitor	how	modules	interact	
�  Some	manual	code	inspec2ons	

�  System	tests:	
�  Scripted	test	suite	
�  Manual	tests	–	trying	to	break	the	system	

�  Acceptance	tests:	
�  Customer	manually	tests	so,ware	

Model-Based	tes2ng	(automa2c	test	extrac2on	from	a	model)	not	
specifically	associated	with	a	level	–>	Needs	a	model!	

	

29

Conclusions
�  Verifica2on	and	valida2on	are	not	the	same	thing	

�  Verifica2on	shows	conformance	with	specifica2on;		
�  Valida2on	shows	that	the	program	meets	the	customer’s	needs	

	

�  V&V	plans	should	be	drawn	up	to	guide	the	V&V	process	(part	of	
the	V&V	plan	is	a	test	plan)	

�  Each	design	ac2vity	has	a	corresponding	V&V	ac2vity	

�  Sta2c	verifica2on	techniques	involve	examina2on	and	analysis	
for	error	detec2on	(among	others)	

�  Dynamic	verifica2on	implies	“running”	the	code	
30

TEST

Terminology

 Verification Validation

Code is executed

user

Dynamic Static
Artifact Inspection

manual automatic

Design level AA XX V&V
planning

XX Test
Validation
Dynamic Verification

Static Verification

Terminology is
slightly

different in
the Formal
Methods

community!

31

Literature

�  Jorgensen,	So?ware	Tes/ng:	A	Cra?sman's	Approach.		
�  Chapter	1	

�  Ian	Sommerville,	So?ware	Engineering		
�  Chapter	22.1-2	+	23.1-2,	Edi2on	7	or	8	

	

32

Another software bug…

33 �  Posted on YoutTube on August 15, 2009
�  Fixed by Apple few months later

