Simply typed lambda-calculus

Types, context, terms and typing rules

We define:
Types A,B == N|A—= A
Contexts I' == () | . A
Termst := n|tt|XNAt|St|z
Typing rules

'kFn:A
IAr 0: A 'BF n+1:A
INArt¢: B 'rt:A—> B 'Fu:A
'FXAt:A—> B 'tu:B
I'Et:N
'Fz:N 'ESt¢:N
Closures and evaluation
We define:
Closures ¢ == tp|cc|z]|Sec
Environment p == () | p,c
Valuesv = z|Sv | (A At)p
Evaluation
np — c
0(p,c) — ¢ (n+1)(p,d)—c
co > ¢
(NAt)p c—t(p,c) co €1+ ¢ €1

(to t1)p = (top) (t1p)
cr
Zp—z Sc—Sd (St)p—S (tp)

Typing rules for closures and main theorems

c:N
z:N Sc:N
co:A—B c¢1:A '+t A p:T
coc1:B tp: A
p:T c: A

W (p,c):T.A

Theorem 1: If ¢ : A then ¢ is a value or 3¢ (c —)

Theorem 2: Ifc: A and c— ¢ then ¢ : A

Normalization Theorem

We define R 4(c) by induction on A

Rn(c) is Fv (¢ —* v)
Ry p(c)isVd : A (Ra(d) = Rp(c d))

Lemma 1: Ifc— ¢ and c: A and Ra(c') then R(c)
We define Rr(p)

L Rr(p) c: A
00 Rr.a(p;c)

Lemma 2: IfT'Ft¢: A and Rr(p) then Ra(tp). If ¢ : A then Ra(c).
It follows that we have.

Theorem: If c¢: N then Jv (c —* v).

A small term with a large value

We can define exp A = A — A and the term twice A : exp (exp A) = A(exp A)AA 1 (1 0)
It is possible then to define twice,, = twice (exp™ N) and the term

t = (((...((twice,, twice,_1) twice,_2)...) twicey) S) z

is then of type ¢ : N. By the Theorem, there exists v such that ¢ —* v. However v is of the form
Sk z where k is a tower of n exponentials k = 22%"

