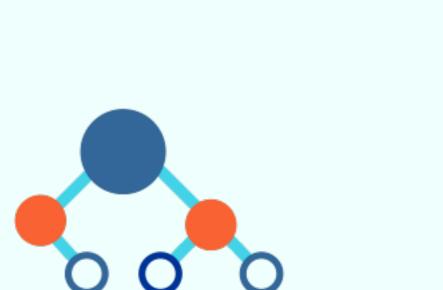
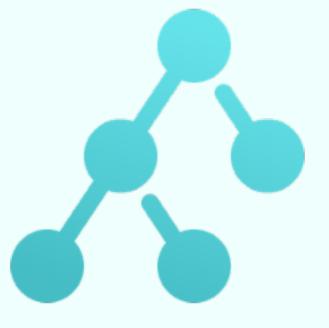


Data Structures

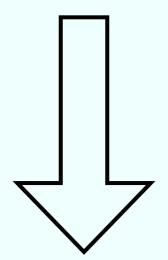
Exercise Session



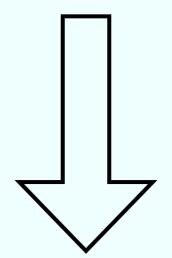
Marco Vassena



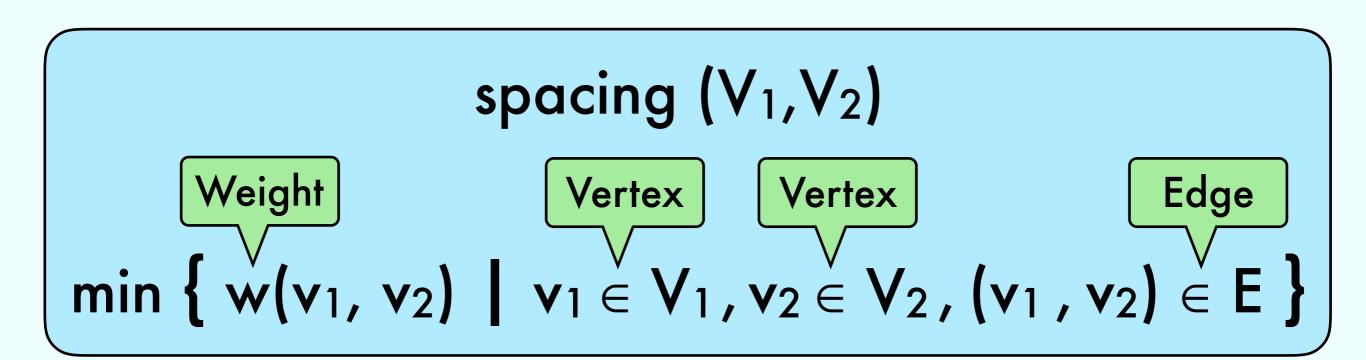
Minimum Spanning Tree

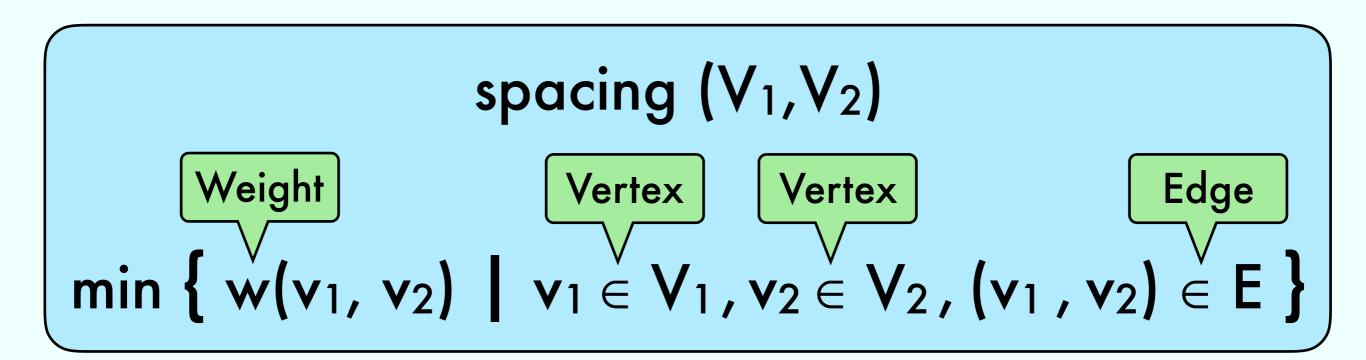


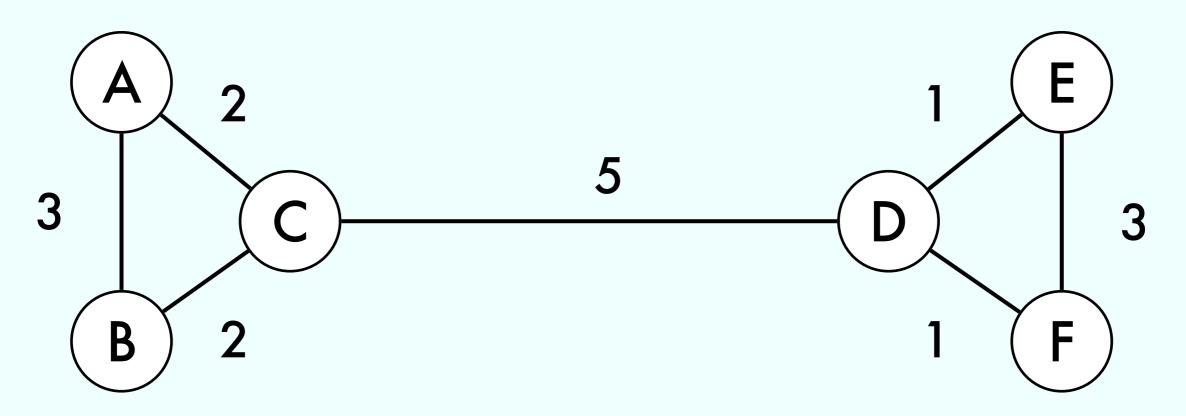
Minimum Spanning Tree

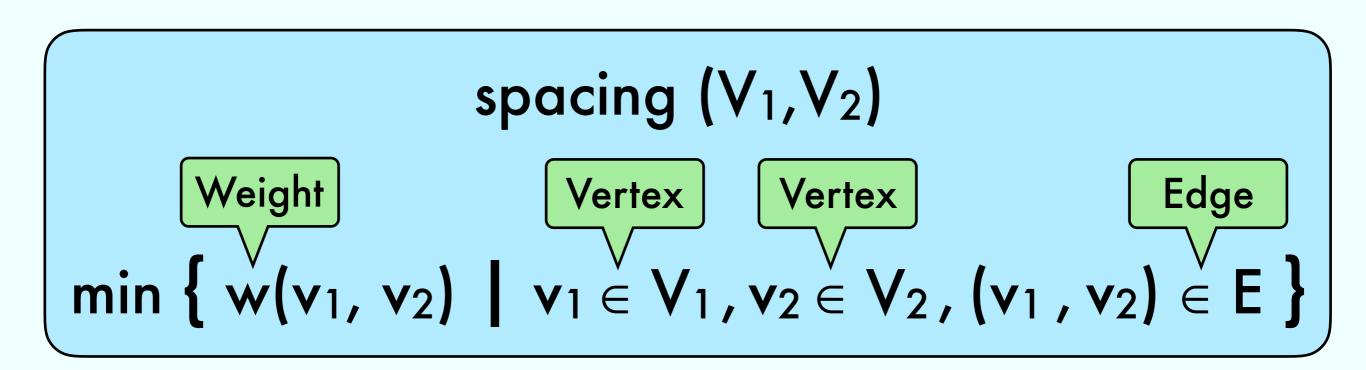


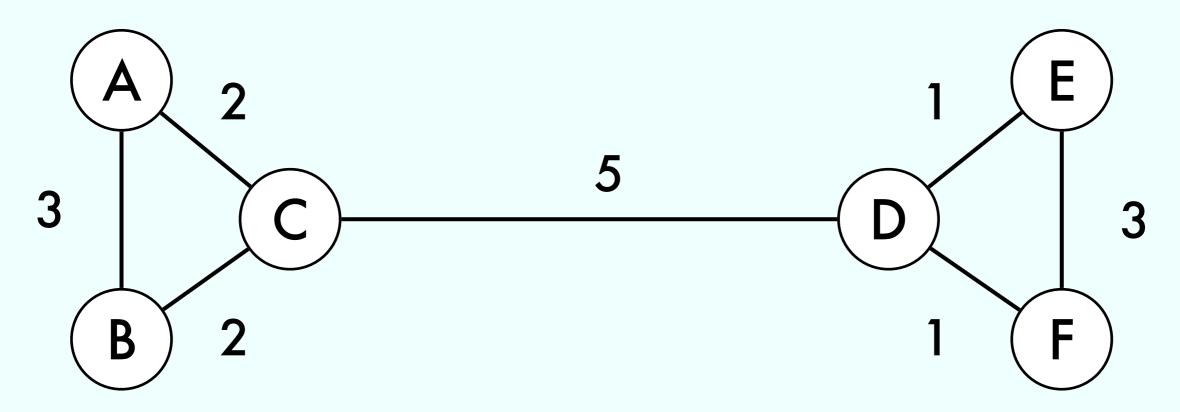
Maximum Spanning Tree



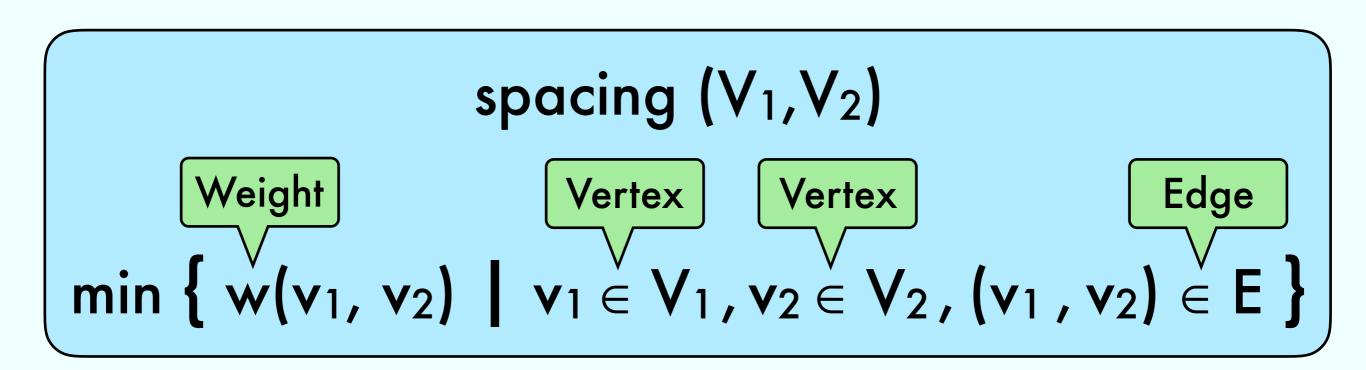


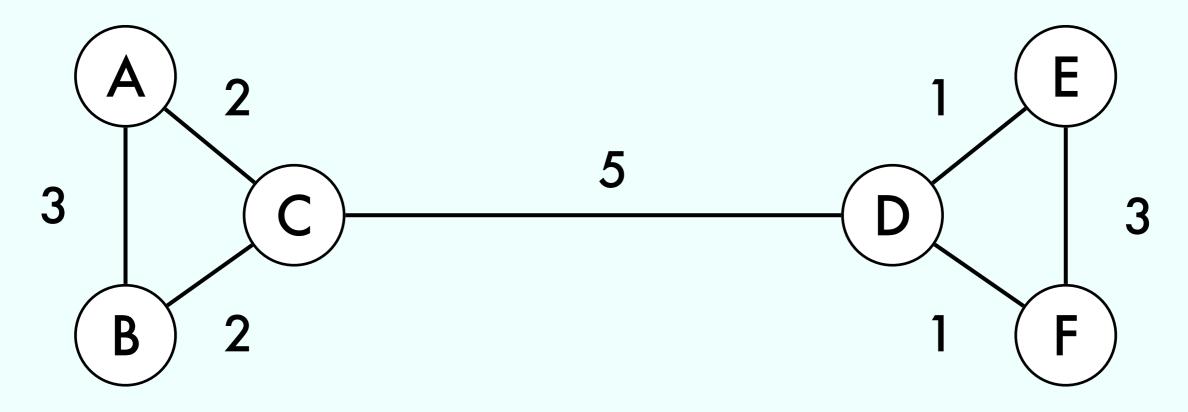






 $spacing({A,B}, {C,D,E,F}) =$





spacing($\{A,B\}$, $\{C,D,E,F\}$) = 2

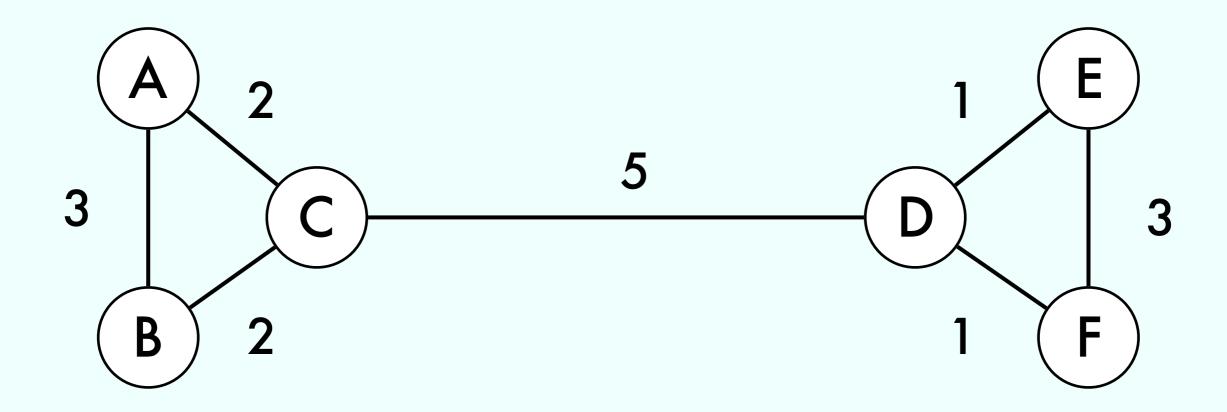
max { spacing(V_1, V_2) | V_1, V_2 partitions of V}

max { spacing(V_1, V_2) | V_1, V_2 partitions of V}

```
spacing (V_1, V_2) = \min \{ w(v_1, v_2) \mid v_1 \in V_1, v_2 \in V_2, (v_1, v_2) \in E \}
```

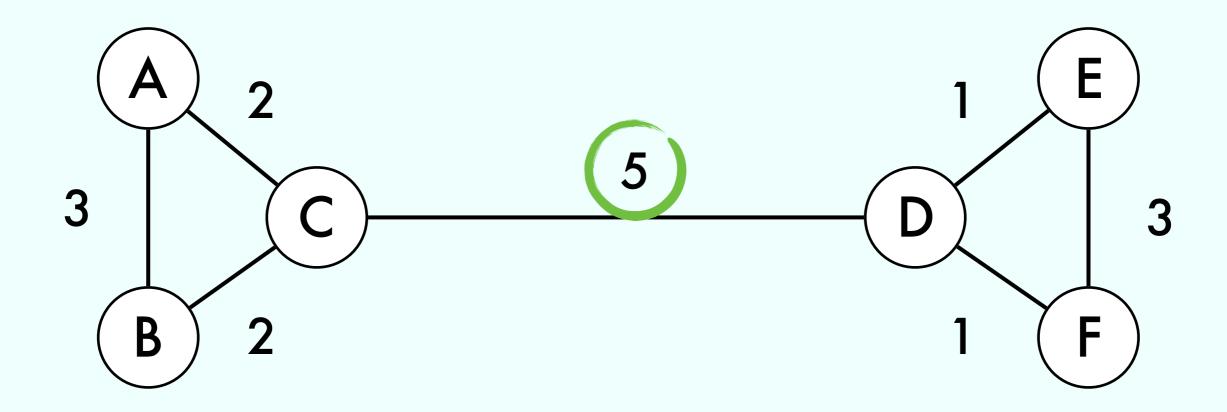
max { spacing(V_1, V_2) | V_1, V_2 partitions of V}

spacing
$$(V_1, V_2) = \min \{ w(v_1, v_2) \mid v_1 \in V_1, v_2 \in V_2, (v_1, v_2) \in E \}$$

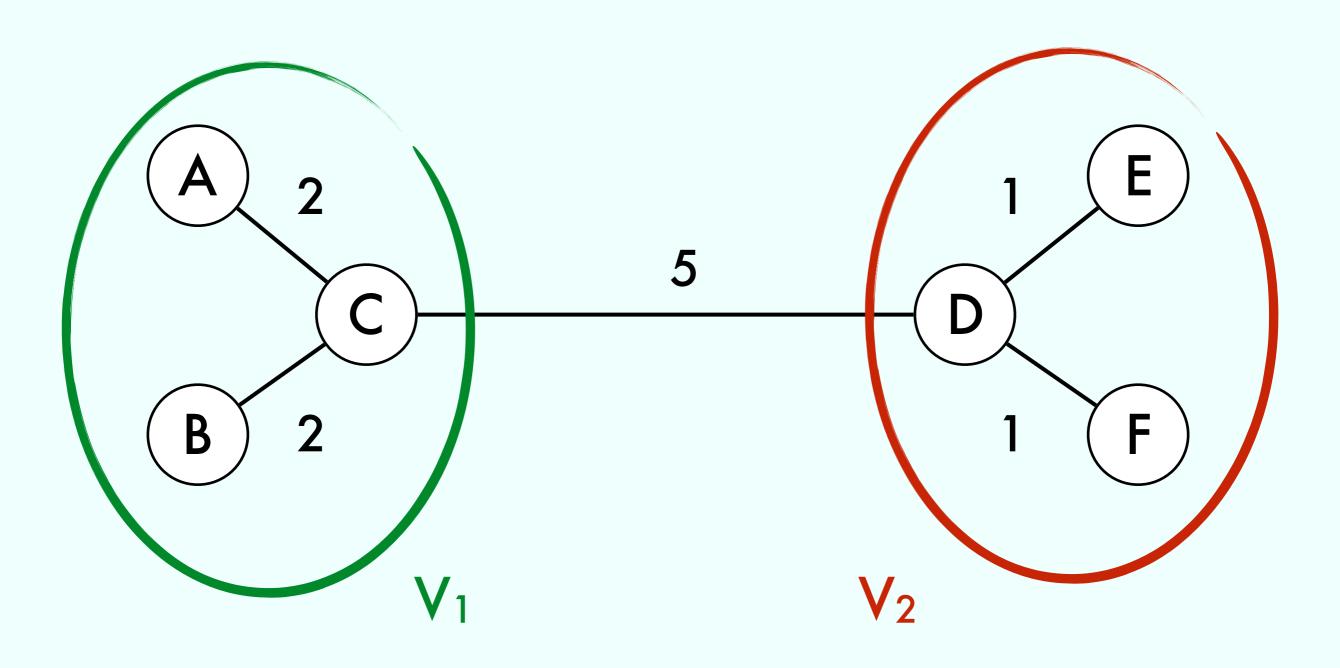


max $\{ \text{spacing}(V_1, V_2) \mid V_1, V_2 \text{ partitions of } V \}$

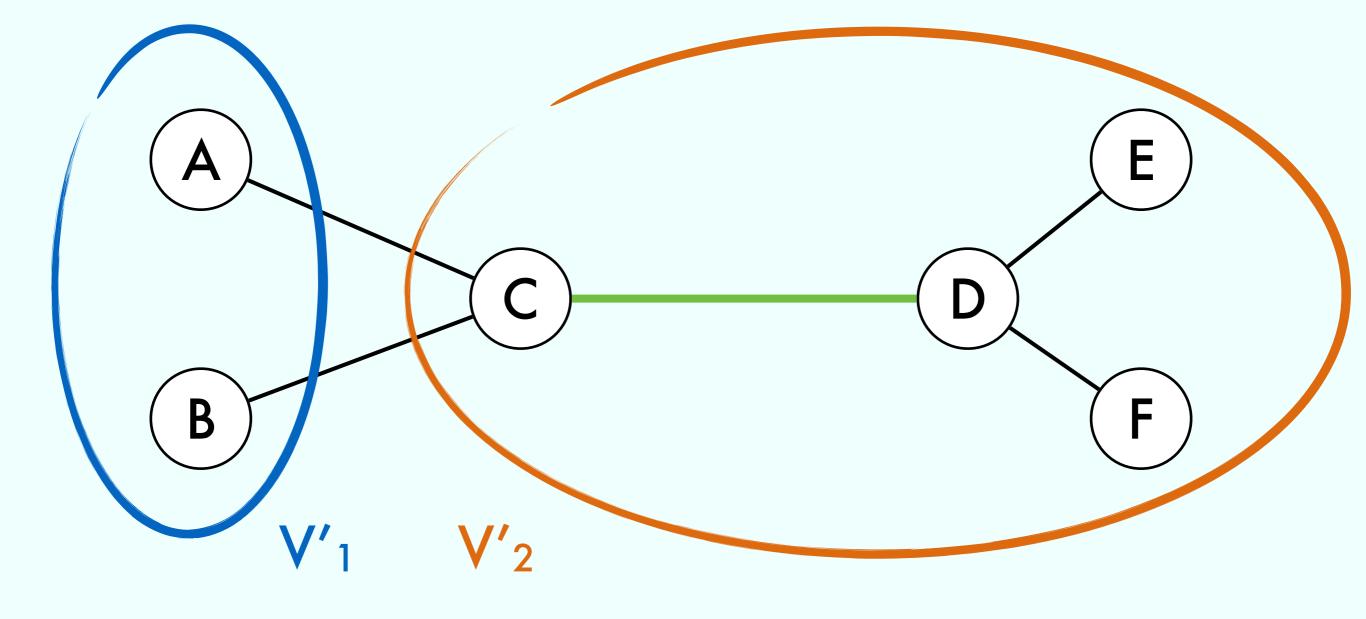
spacing
$$(V_1, V_2) = \min \{ w(v_1, v_2) \mid v_1 \in V_1, v_2 \in V_2, (v_1, v_2) \in E \}$$

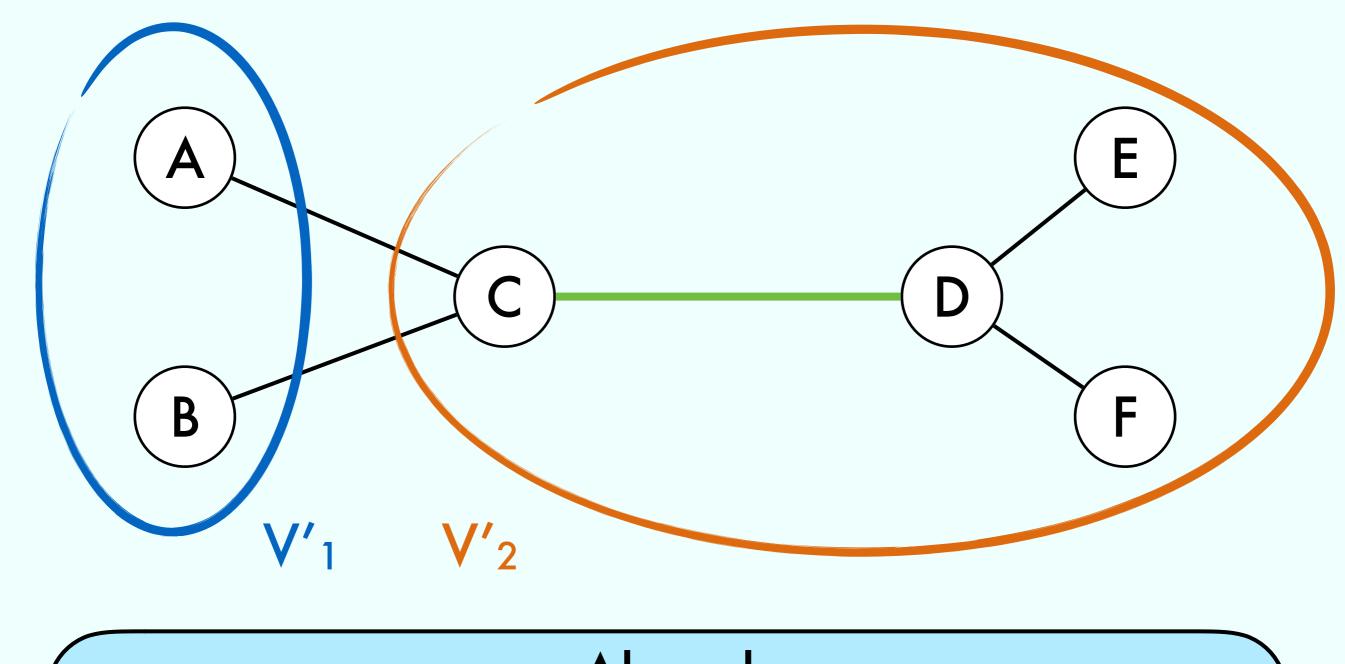


Problem 7

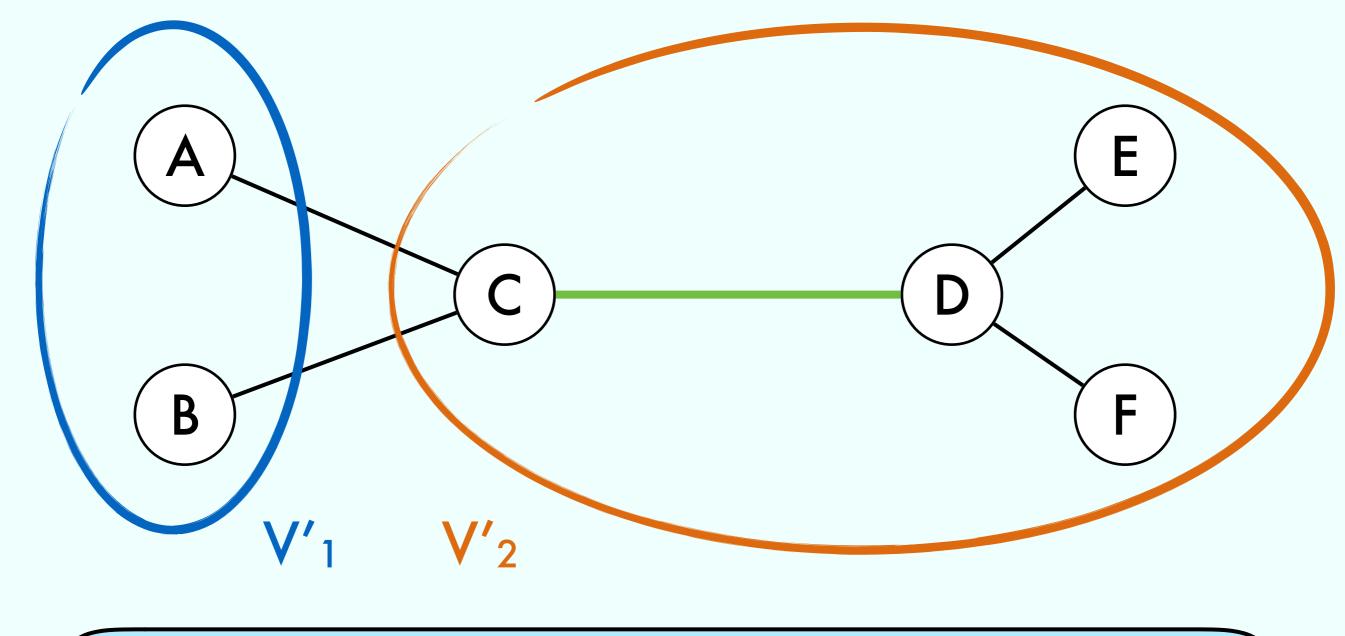


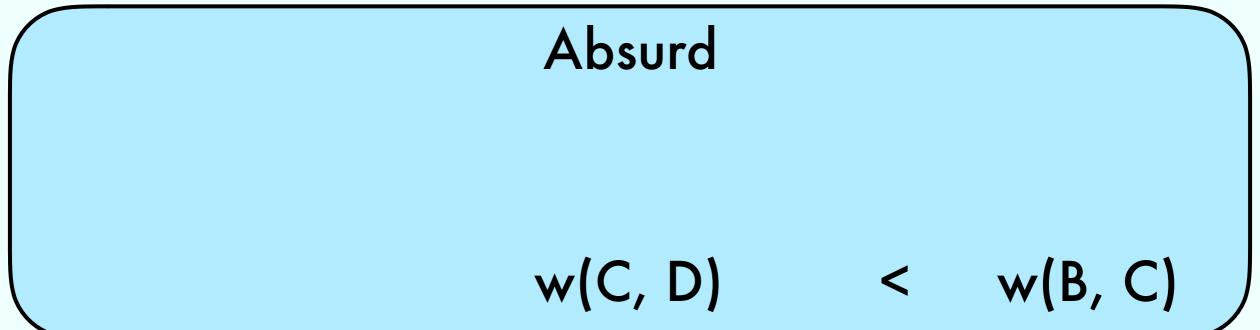
Minimum Spanning Tree

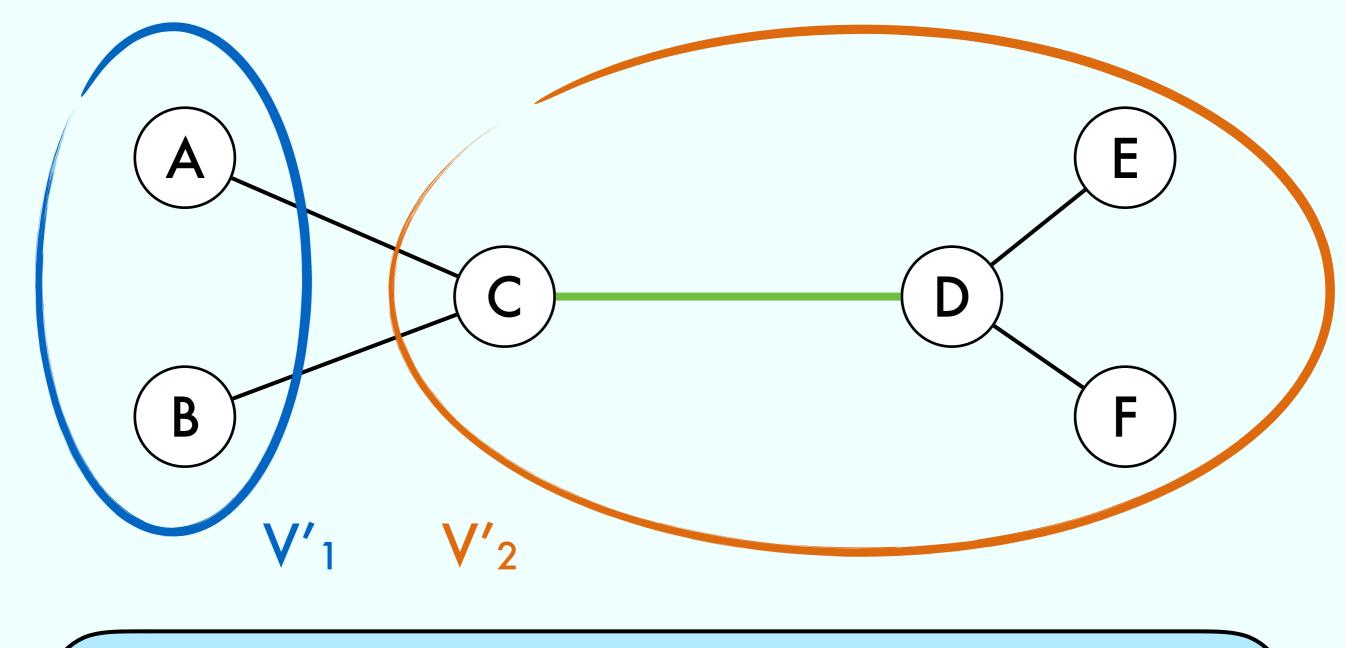


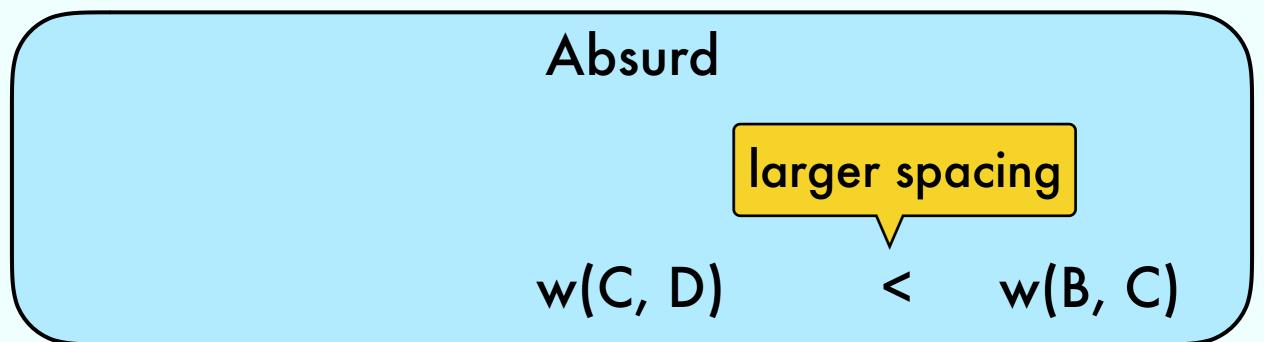


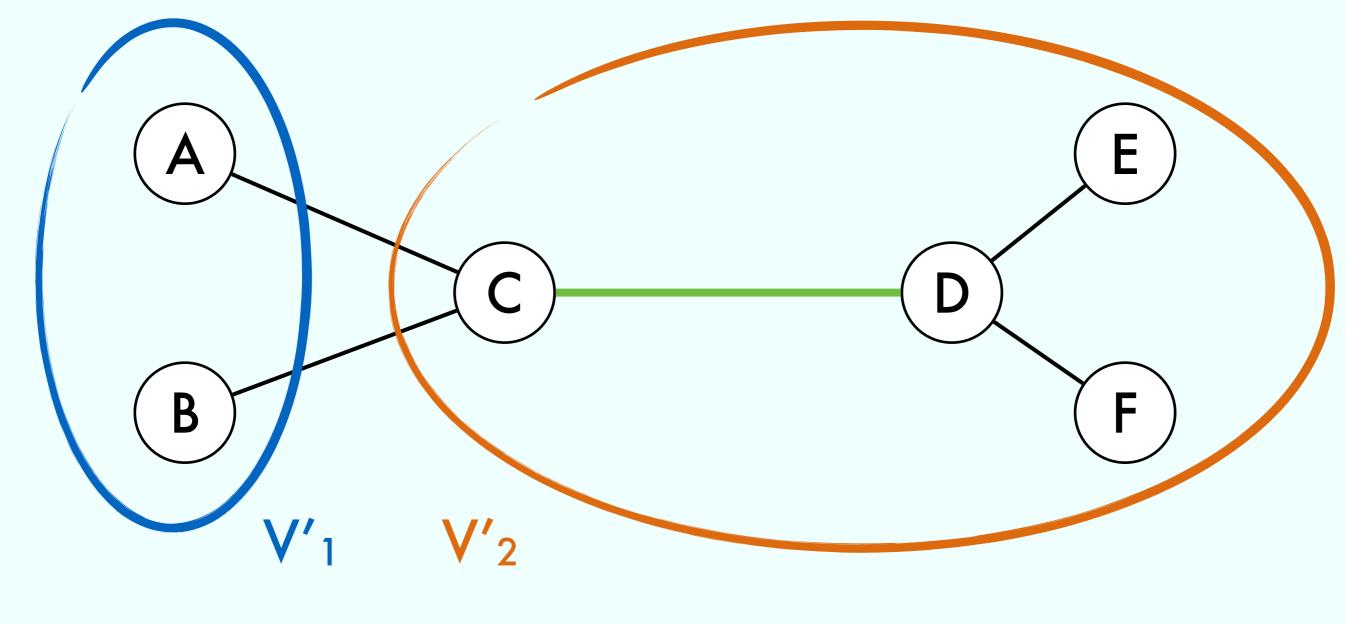


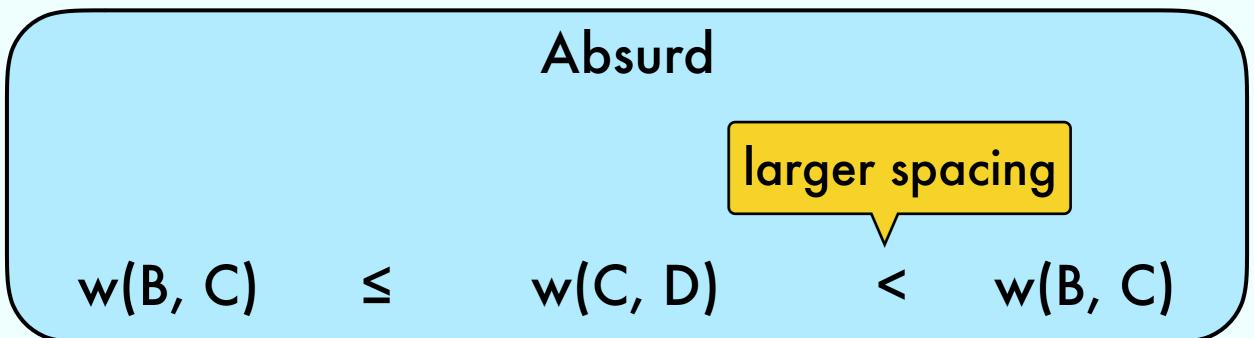


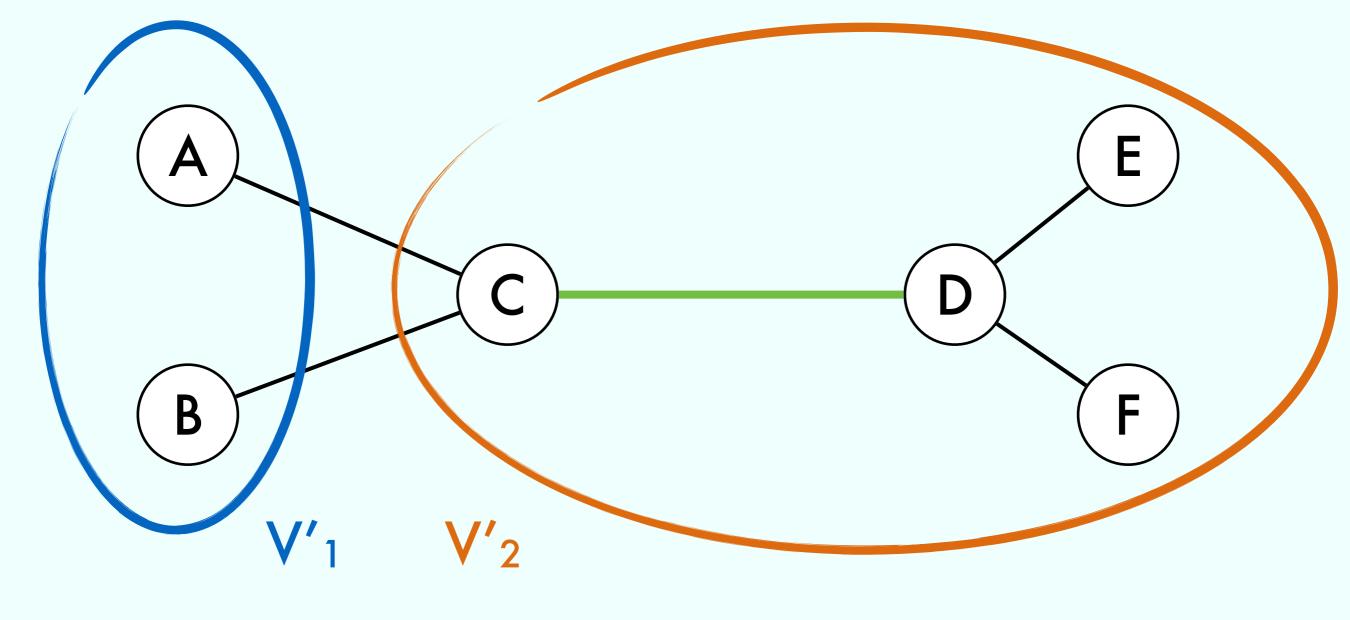




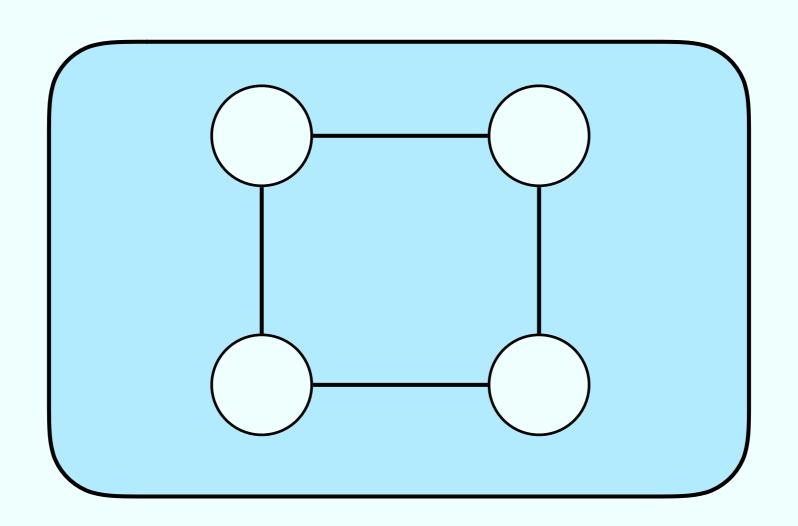


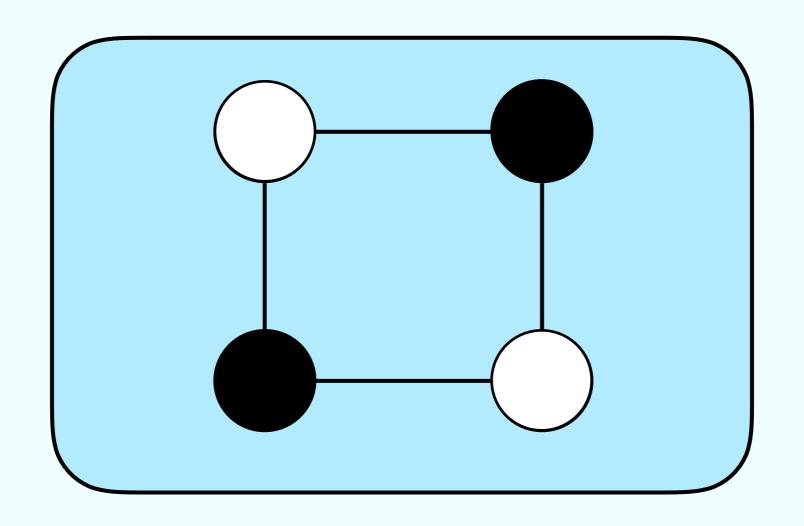


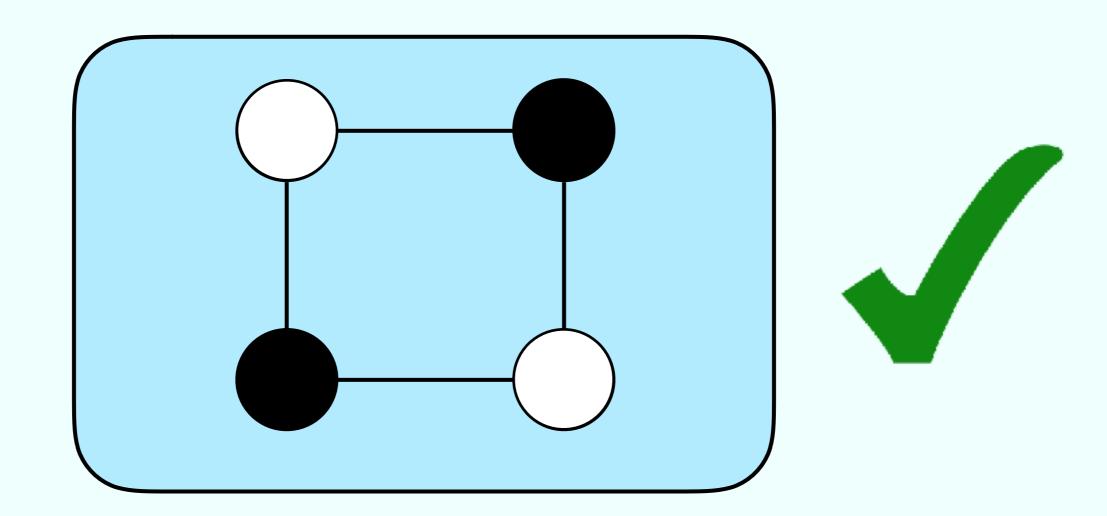


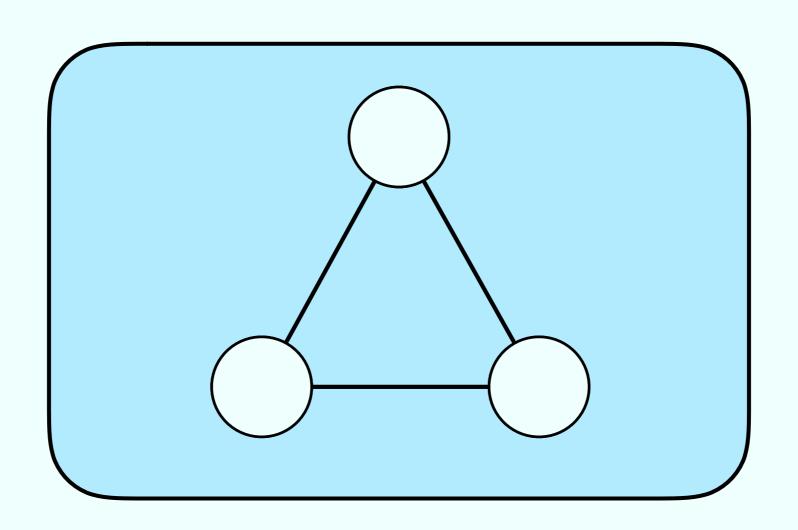


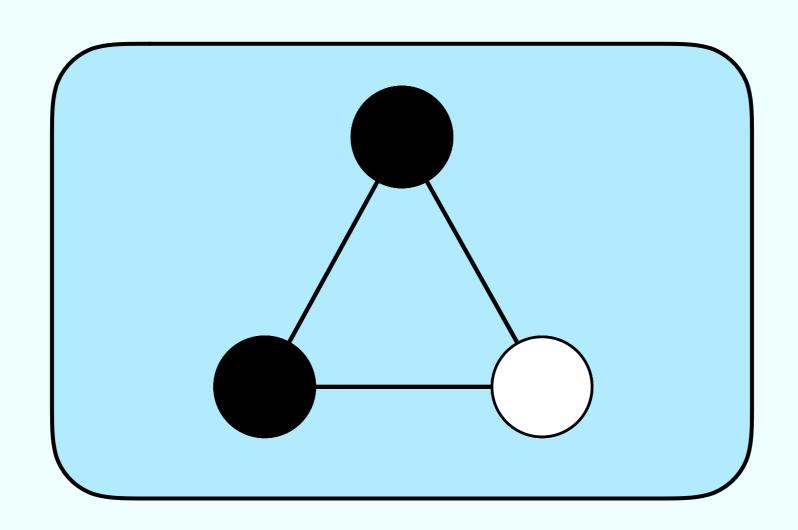


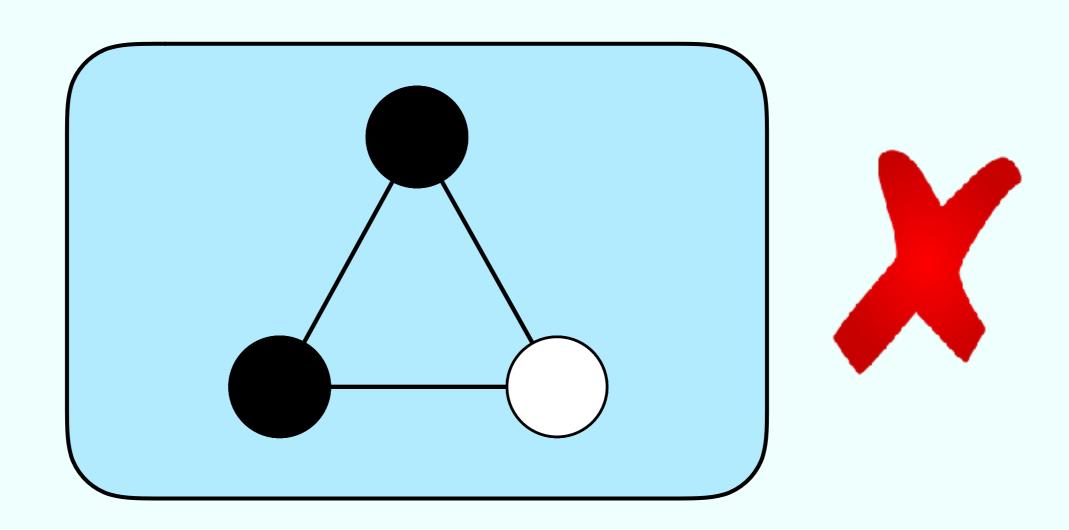


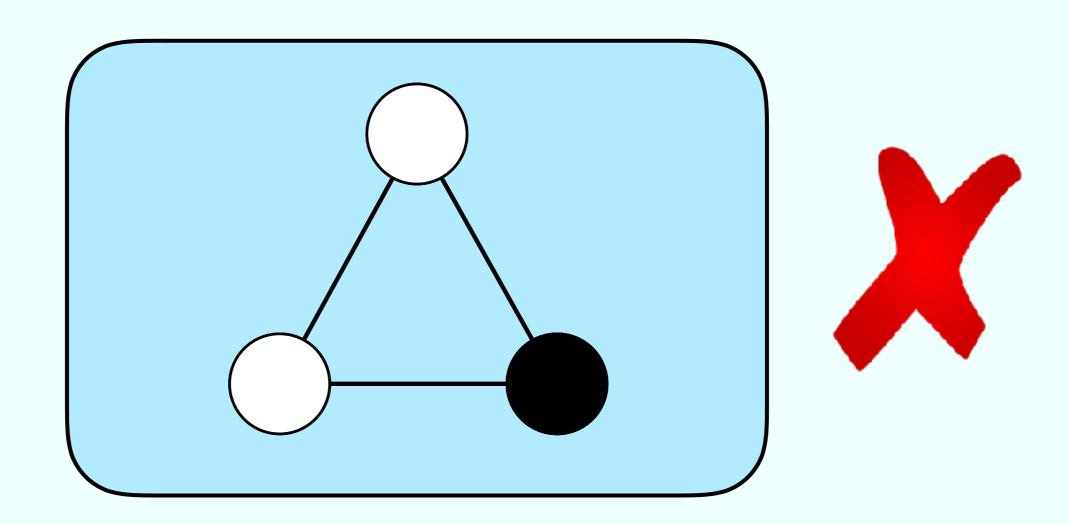


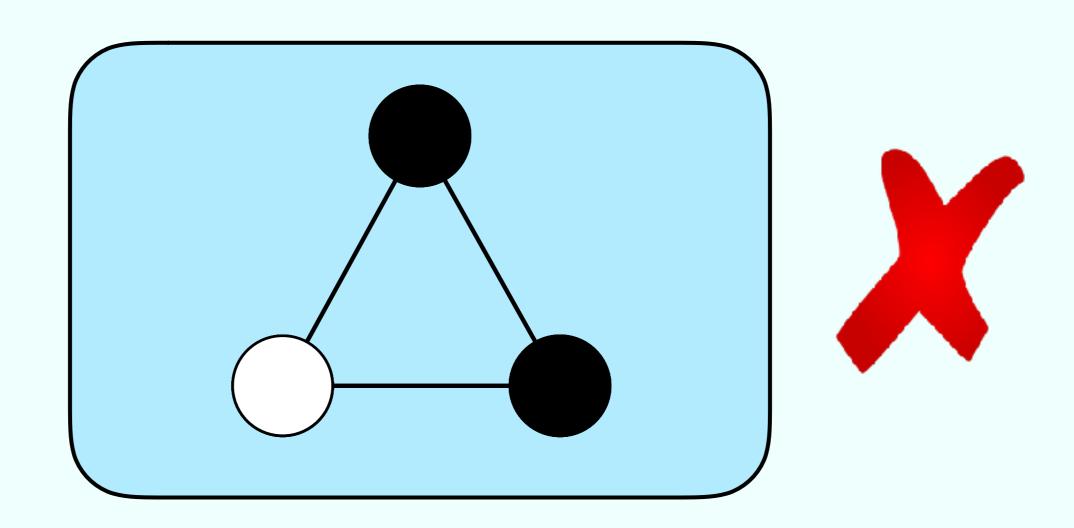


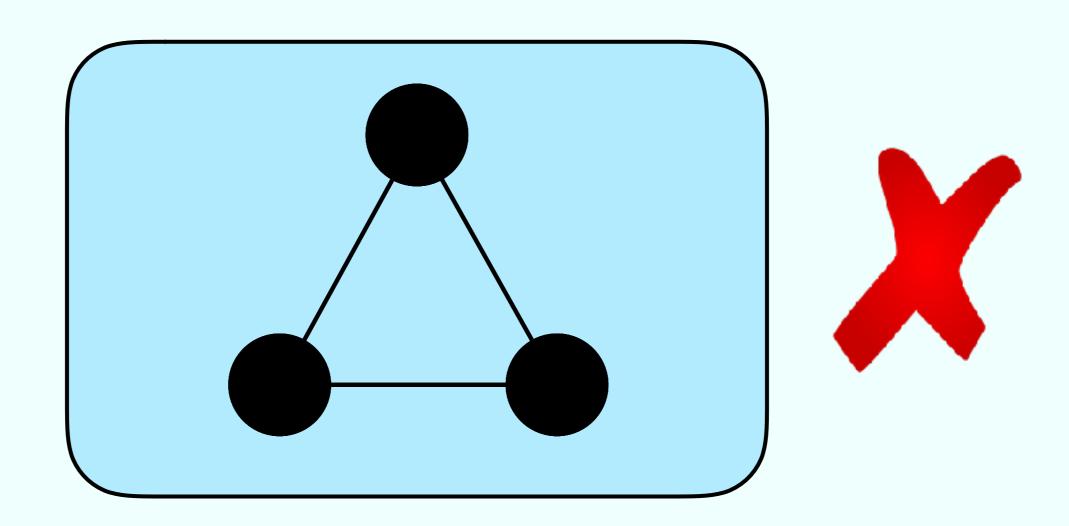


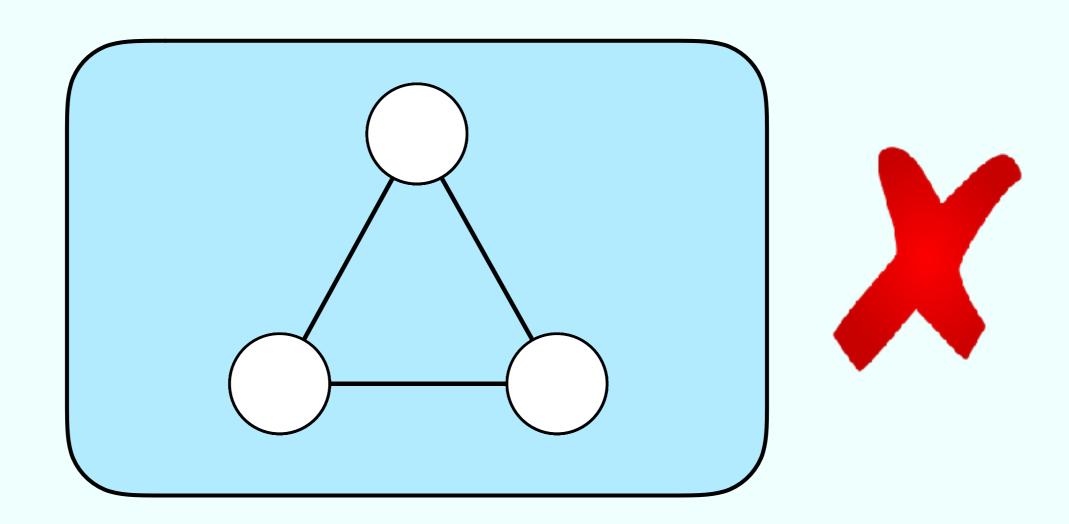








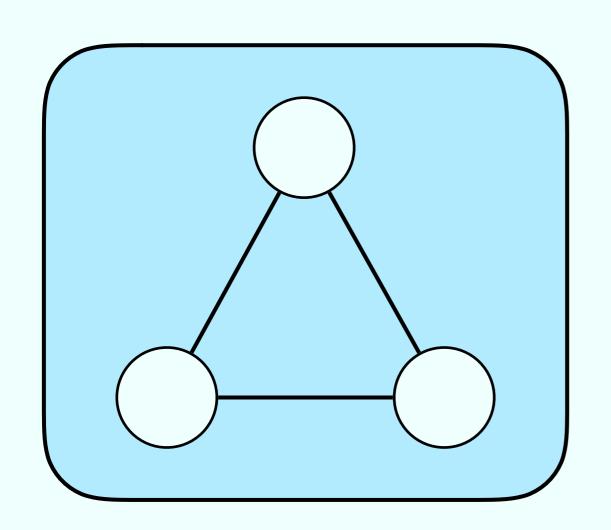


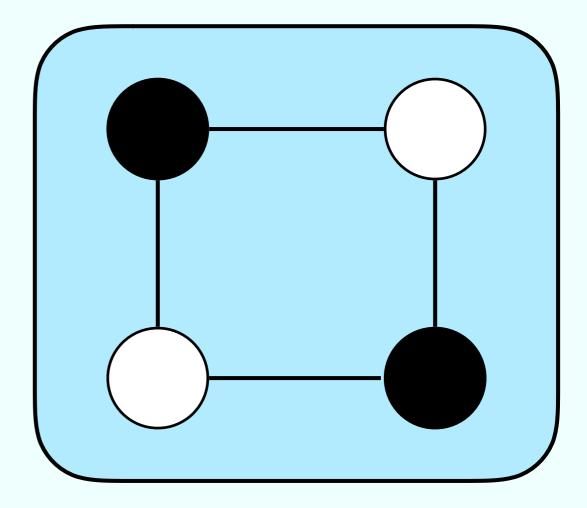




Better Question

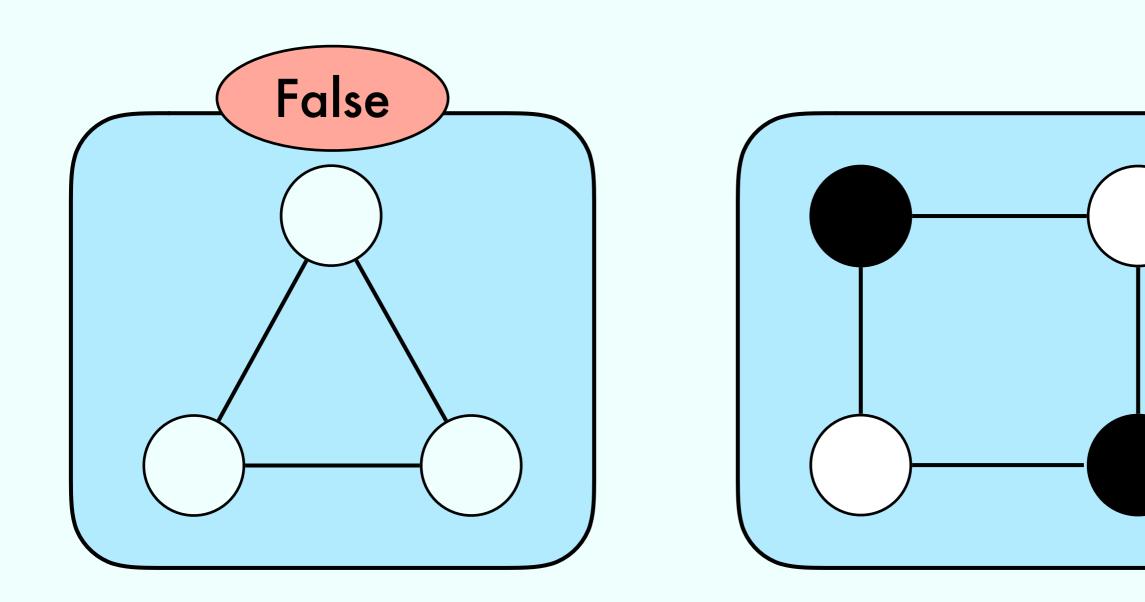
Can we colour a graph in black and white, such that neighbours nodes have different colours?





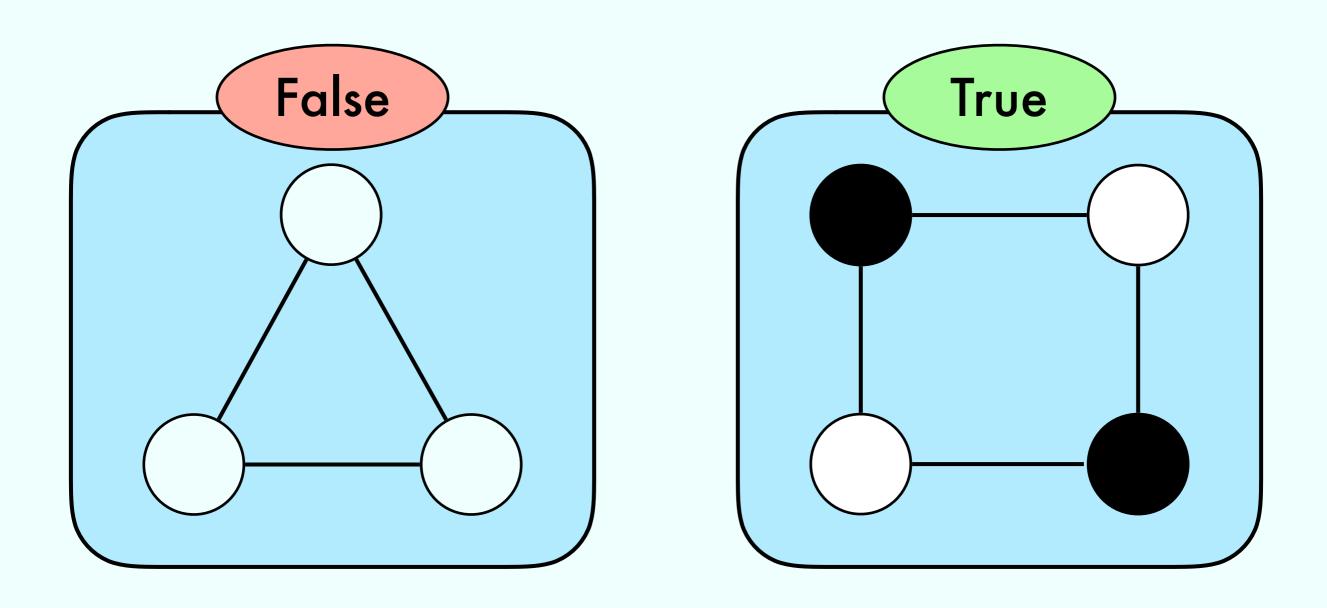
Better Question

Can we colour a graph in black and white, such that neighbours nodes have different colours?



Better Question

Can we colour a graph in black and white, such that neighbours nodes have different colours?

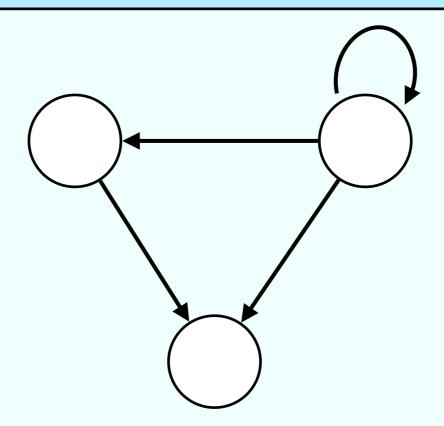


A sink node:

- Has incoming edges from any other node
- Has no outgoing edges

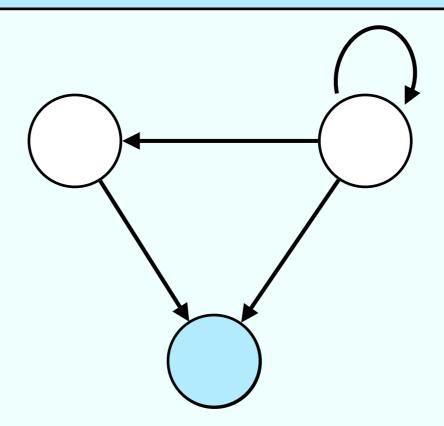
A sink node:

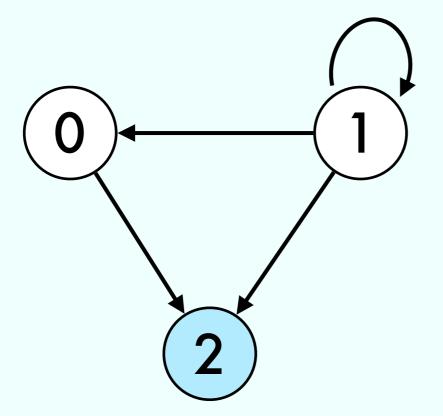
- Has incoming edges from any other node
- Has no outgoing edges



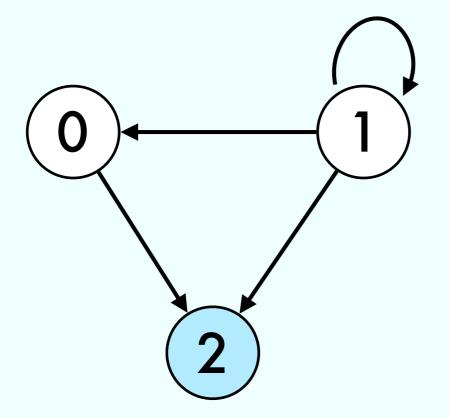
A sink node:

- Has incoming edges from any other node
- Has no outgoing edges

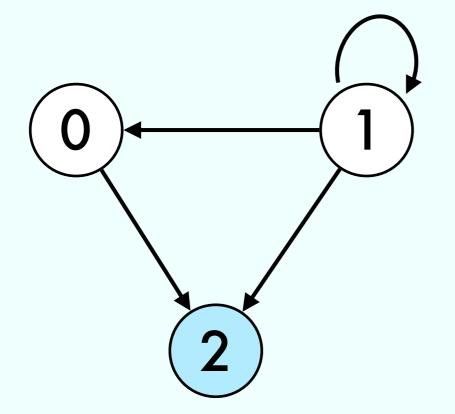




0	0	1
1	1	1
0	0	0



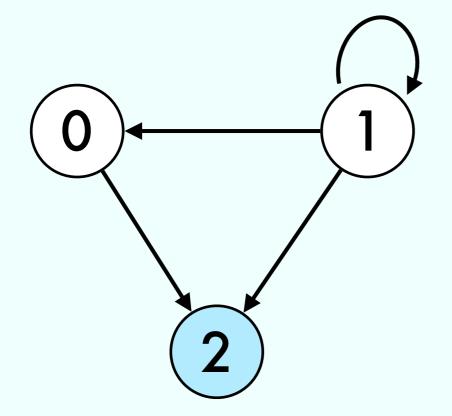
0	0	1
1	1	1
0	0	0



0	0	1
1	1	1
0	0	0

Implement Algorithm

Does a graph have a sink?



0	0	1
1	1	1
0	0	0

Implement Algorithm

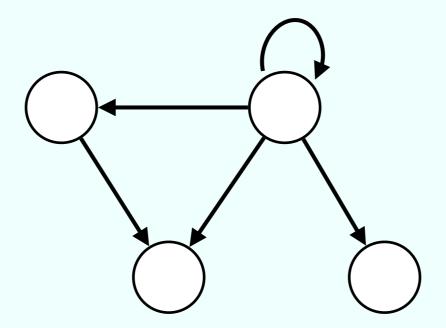
Does a graph have a sink?

O(V)

A sink node:

- Has incoming edges from any other node
- Has no outgoing edges

How many sinks can a graph have?



Sketch Solution

Find Candidate

O(V)

Is Candidate a Sink?


```
row = 0
col = 1
while (col < N)</pre>
  if M[row][col]
     row = col
     col = col + 1
  else
     col = col + 1
```

```
row = 0
col = 1
while (col < N)
                       row is not a sink
  if M[row][col]
     row = col
    col = col + 1
  else
     col = col + 1
```

```
row = 0
col = 1
while (col < N)
                        row is not a sink
  if M[row][col]
     row = col
     col = col + 1
                         col is not a sink
  else
     col = col + 1
```

```
row = 0
col = 1
while (col < N)
                        row is not a sink
  if M[row][col]
     row = col
     col = col + 1
                         col is not a sink
  else
     col = col + 1
```

row is the candidate

```
for i in {0 ... N-1}
  if row ≠ i ∧ M[row][i] v ¬ M[i][row]
  return false
return true
```

```
for i in {0 ... N-1}
  if row ≠ i ∧ M[row][i] v ¬ M[i][row]
  return false
return true
```

```
for i in {0 ... N-1}
  if row ≠ i ∧ M[row][i] v ¬ M[i][row]
  return false
return true
```

```
for i in {0 ... N-1}
  if row ≠ i ∧ M[row][i] v ¬ M[i][row]
  return false
return true
```

```
for i in {0 ... N-1}
  if row ≠ i ∧ M[row][i] v ¬ M[i][row]
  return false
return true
```

```
for i in {0 ... N-1}
  if row ≠ i ∧ M[row][i] v ¬ M[i][row]
  return false
return true
```

```
for i in {0 ... N-1}
  if row ≠ i ∧ M[row][i] v ¬ M[i][row]
  return false
return true
```

	SEK	EUR	USD
SEK	1	2	3
EUR	1/2	1	2
USD	1/3	1/2	1

	SEK	EUR	USD
SEK	1	2	3
EUR	1/2	1	2
USD	1/3	1/2	1

300 USD

	SEK	EUR	USD
SEK	1	2	3
EUR	1/2	1	2
USD	1/3	1/2	1

300 USD ⇒ 100 SEK

	SEK	EUR	USD
SEK	1	2	3
EUR	1/2	1	2
USD	1/3	1/2	1

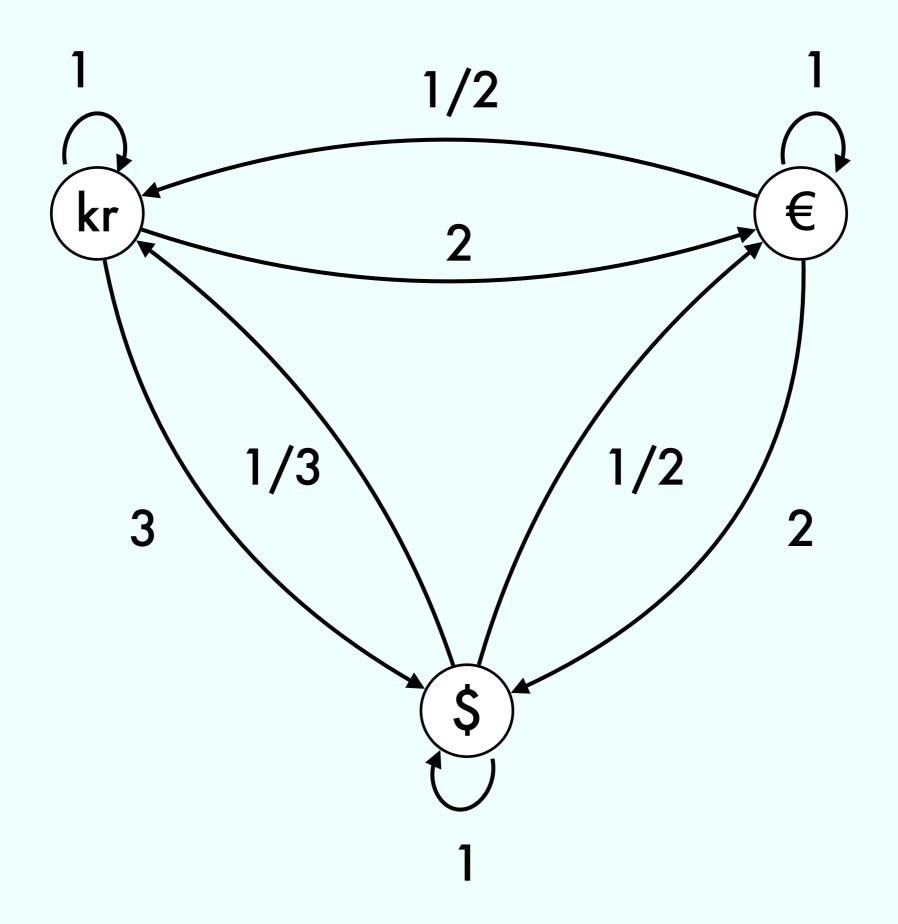
300 USD ⇒ 100 SEK ⇒ 200 EUR

	SEK	EUR	USD
SEK	1	2	3
EUR	1/2	1	2
USD	1/3	1/2	1

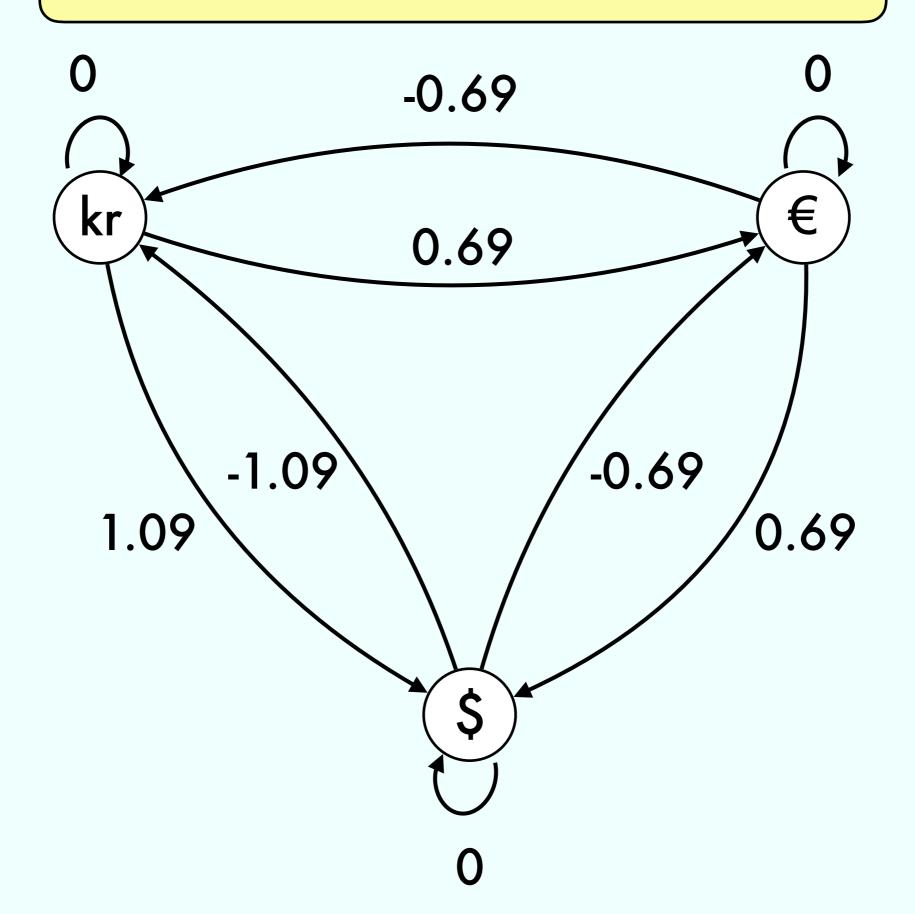
300 USD \Rightarrow 100 SEK \Rightarrow 200 EUR \Rightarrow 400 USD

	SEK	EUR	USD
SEK	1	2	3
EUR	1/2	1	2
USD	1/3	1/2	1

300 USD \Rightarrow 100 SEK \Rightarrow 200 EUR \Rightarrow 400 USD REPEAT for \$\$\$



Find Shortest Path from kr to kr



Find Shortest Path from kr to kr

