

Data Structures

Exercise Session

Marco Vassena

Find if a list of words contains a reversed word

Find if a list of words contains a reversed word

cat

live

dog

evil

bird

Find if a list of words contains a reversed word

Find if a list of words contains a reversed word

cat
foo
dog
bar
bird

Find if a list of words contains a reversed word

Find if a list of words contains a reversed word

Use hash-based data structures

Analyze the time complexity

```
// \sum |w| = N
S = new HashSet();
for (String w : ws)
 if (reverse(w) \in S)
   then return true;
   else S.insert(w);
return false;
```

Bijection

Invariant

 $\forall s \in S, t \in T$ $s \mapsto t \text{ if and only if } t \leftrightarrow s$

Exercise 2 from 12/8

Design a data structure for bijection

Operation	Time Complexity
insert(s, t)	O(log N)
source(t)	O(log N)
target(s)	O(log N)

Equivalence Relation

R is an equivalence relation, iff $\forall x y z$

reflexive

x R x

symmetric

 $x R y \Rightarrow y R x$

transitive

 $x R y, y R z \Rightarrow x R z$

$$(x,y) \in E \Leftrightarrow x R y$$

Does G represent an equivalence relation?

x R z y R z y R y

Does G represent an equivalence relation?

False

x R z y R z y R y

Path	Length

Path	Length
A - B	
B - C	
A - C	
A - A	
A - D	
B - D	
B - B	

Path	Length
A - B	1
B - C	1
A - C	1
A - A	0
A - D	1
B - D	1
B - B	0

Theorem

G reflexive

G transitive

 \Leftrightarrow

 $\forall u v \in V$

shortestPath(u, v) ≤ 1

Hamiltonian Path
Path that visits all nodes exactly once

Hamiltonian Path
Path that visits all nodes exactly once

Hamiltonian Path
Path that visits all nodes exactly once

Hamiltonian Cycle
Hamiltonian path that is a cycle

Hamiltonian Cycle
Hamiltonian path that is a cycle

Assume you have hasHCycle(G)

Implement hasHPath(G)

Theorem

H. Path in G

H. Cycle in G*