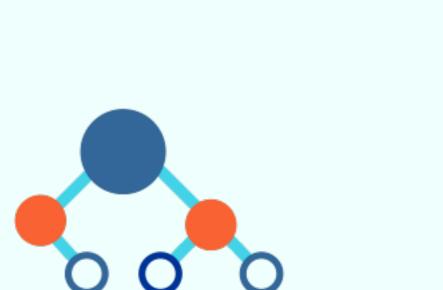
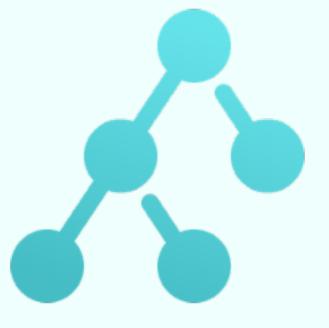


Data Structures

Exercise Session



Marco Vassena



Find if a list of words contains a reversed word

Find if a list of words contains a reversed word

cat

live

dog

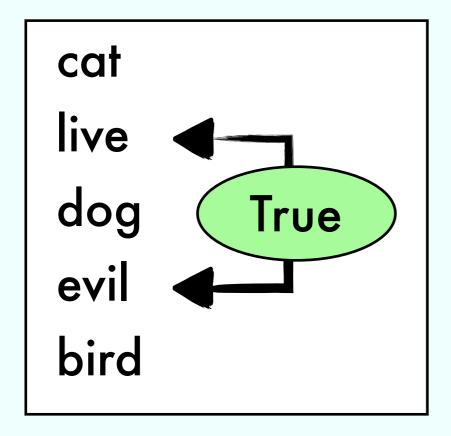
evil

bird

Find if a list of words contains a reversed word

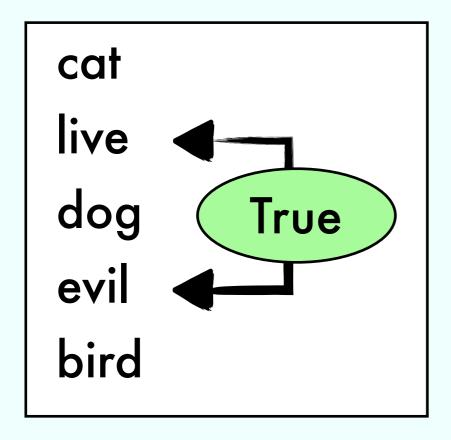


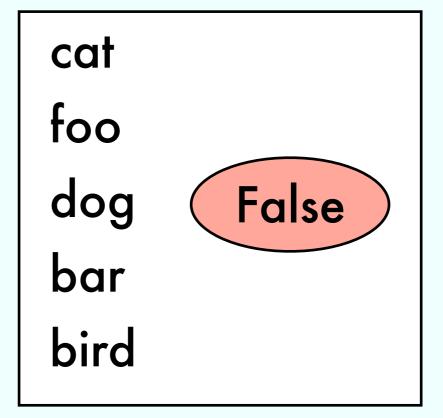
Find if a list of words contains a reversed word



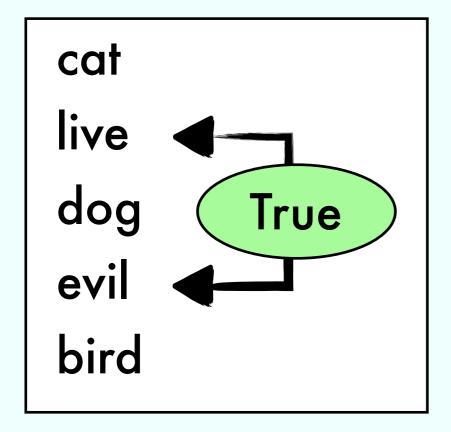
cat
foo
dog
bar
bird

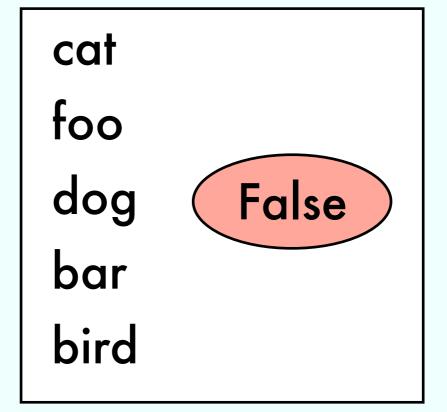
Find if a list of words contains a reversed word





Find if a list of words contains a reversed word



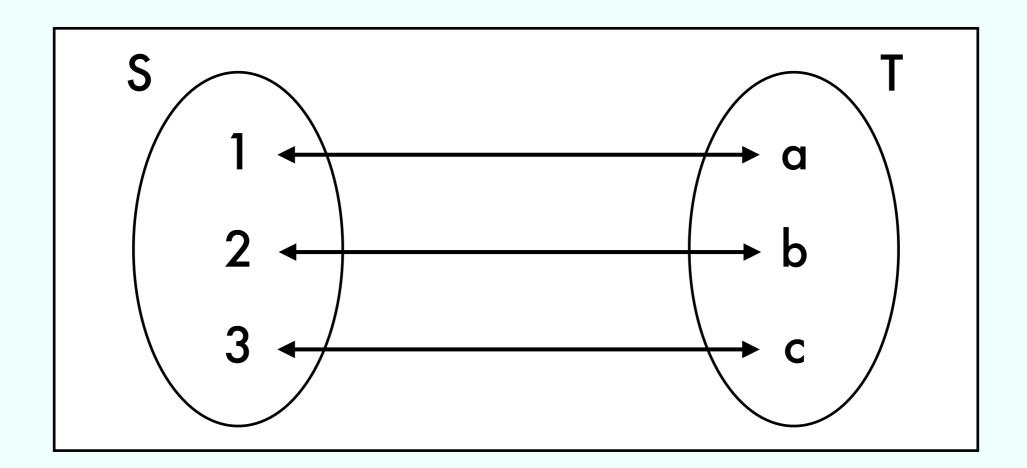


Use hash-based data structures

Analyze the time complexity

```
// \sum |w| = N
S = new HashSet();
for (String w : ws)
 if (reverse(w) \in S)
   then return true;
   else S.insert(w);
return false;
```

Bijection



Invariant

 $\forall s \in S, t \in T$ $s \mapsto t \text{ if and only if } t \leftrightarrow s$

Exercise 2 from 12/8

Design a data structure for bijection

Operation	Time Complexity
insert(s, t)	O(log N)
source(t)	O(log N)
target(s)	O(log N)

Equivalence Relation

R is an equivalence relation, iff $\forall x y z$

reflexive

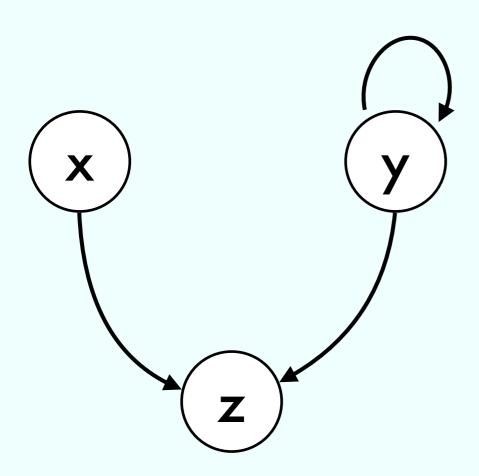
x R x

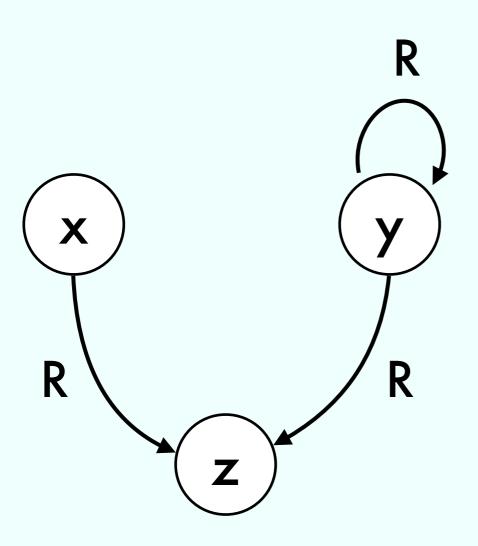
symmetric

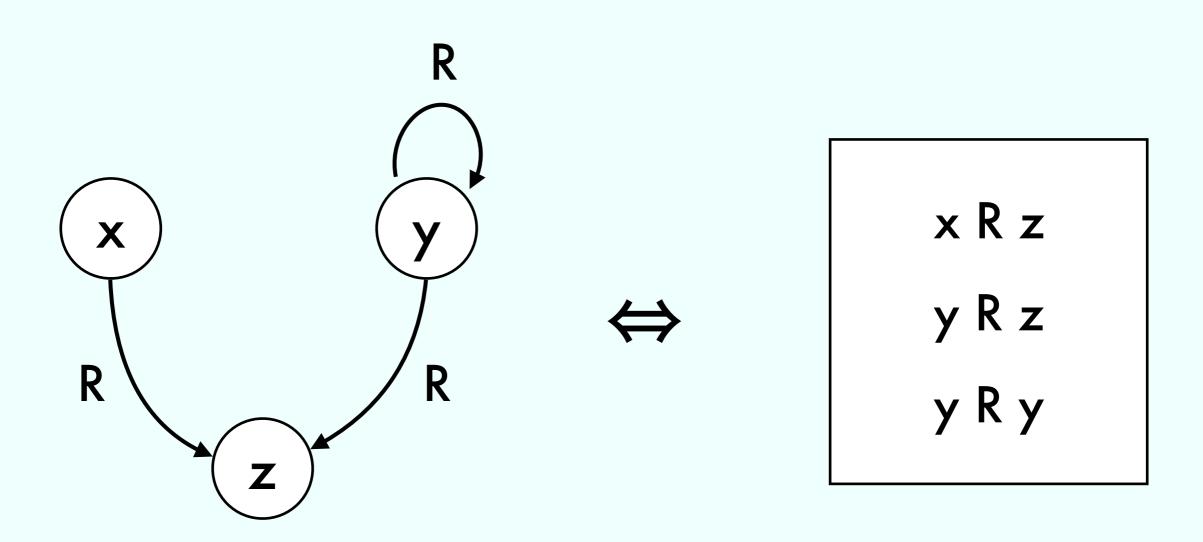
 $x R y \Rightarrow y R x$

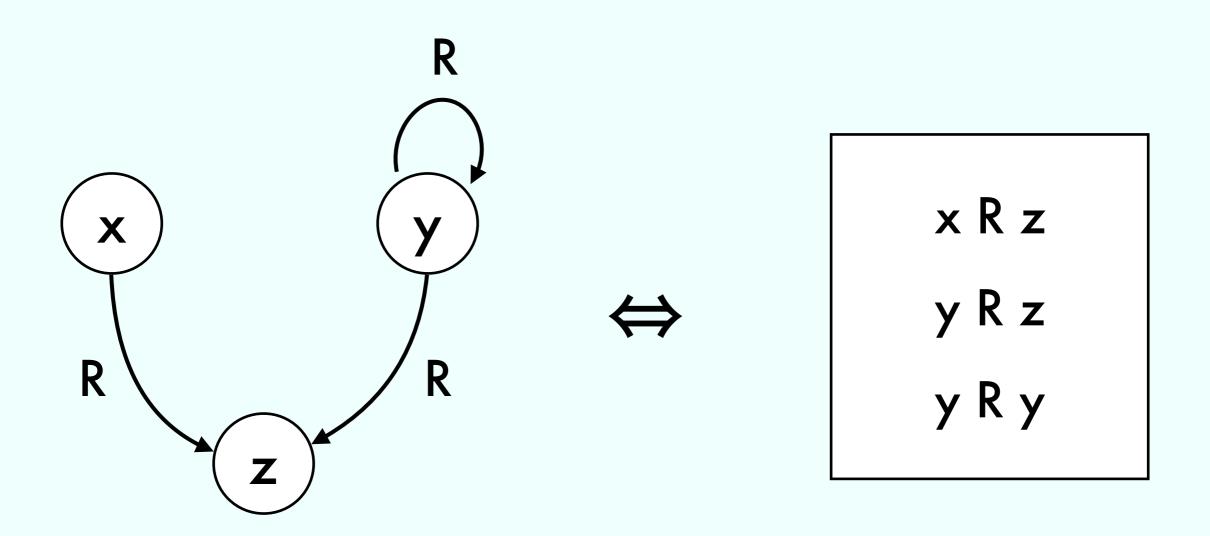
transitive

 $x R y, y R z \Rightarrow x R z$



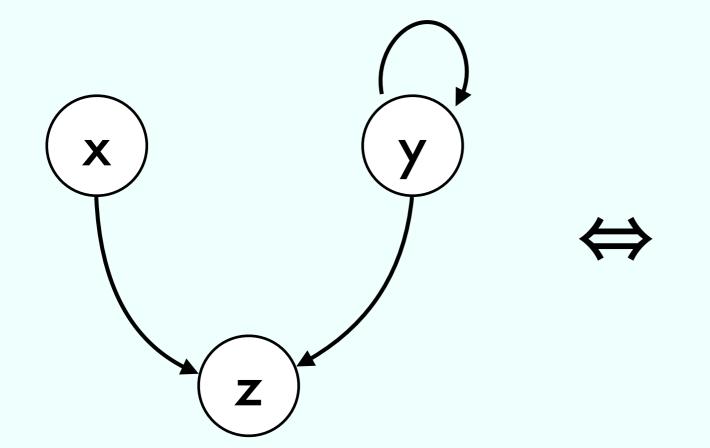






$$(x,y) \in E \Leftrightarrow x R y$$

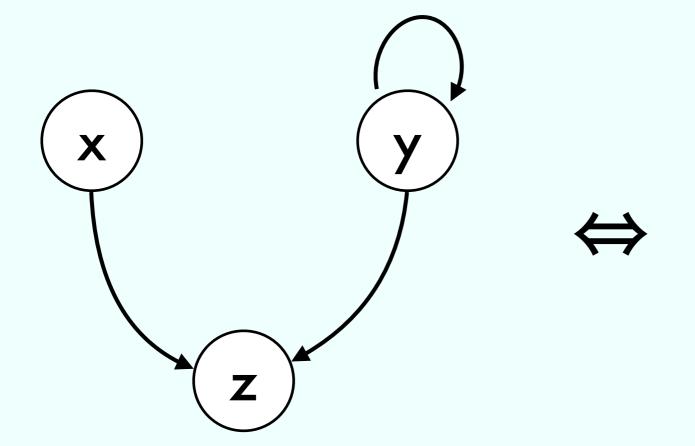
Does G represent an equivalence relation?



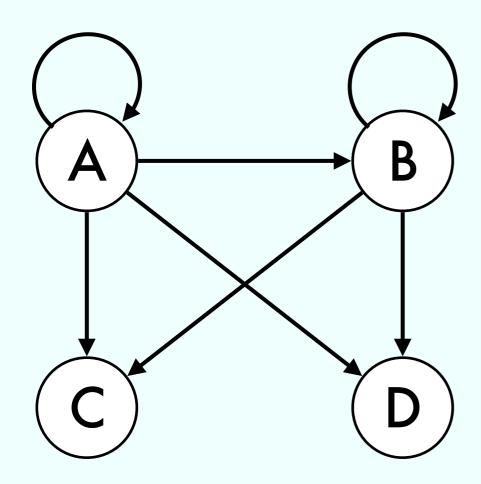
x R z y R z y R y

Does G represent an equivalence relation?

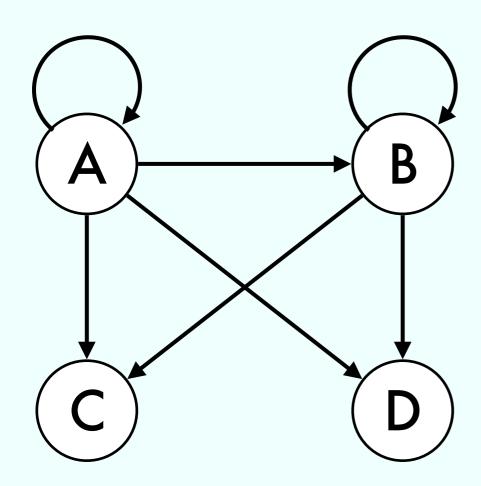
False



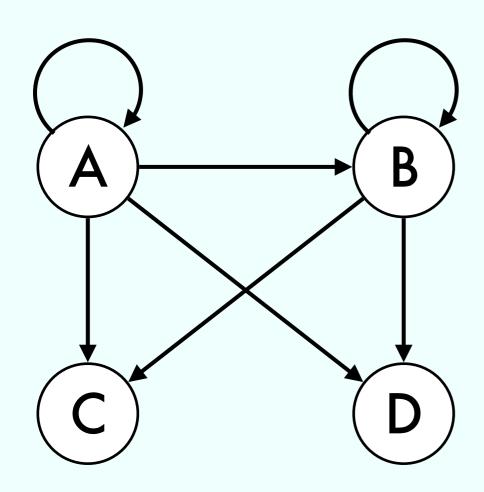
x R z y R z y R y



Path	Length



Path	Length
A - B	
B - C	
A - C	
A - A	
A - D	
B - D	
B - B	



Path	Length
A - B	1
B - C	1
A - C	1
A - A	0
A - D	1
B - D	1
B - B	0

Theorem

G reflexive

G transitive

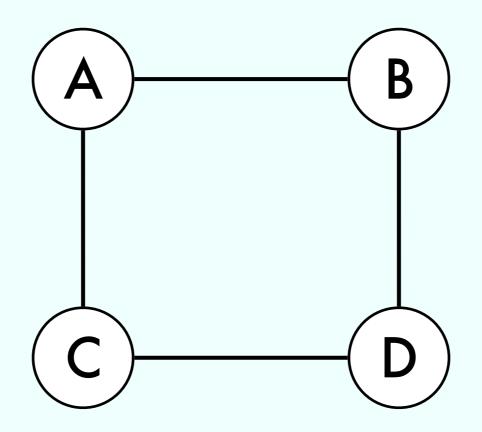
 \Leftrightarrow

 $\forall u v \in V$

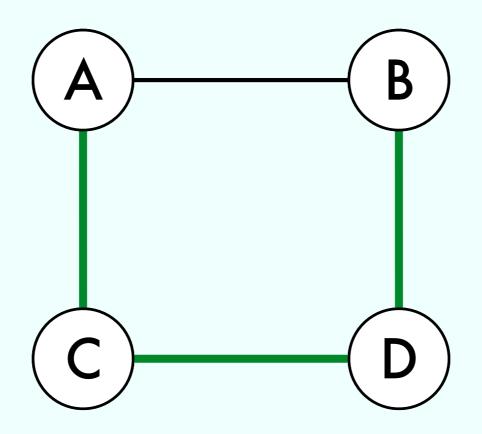
shortestPath(u, v) ≤ 1

Hamiltonian Path
Path that visits all nodes exactly once

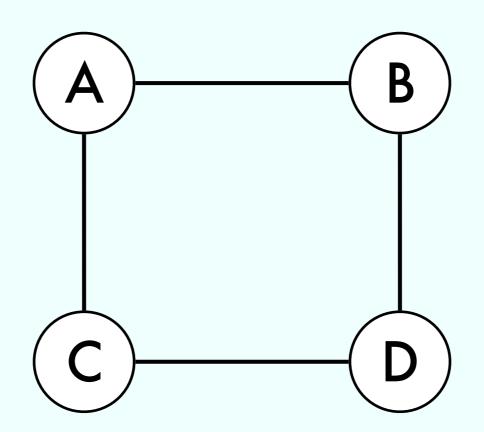
Hamiltonian Path
Path that visits all nodes exactly once



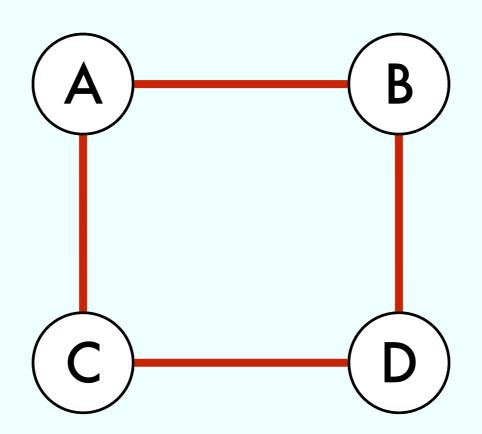
Hamiltonian Path
Path that visits all nodes exactly once



Hamiltonian Cycle
Hamiltonian path that is a cycle

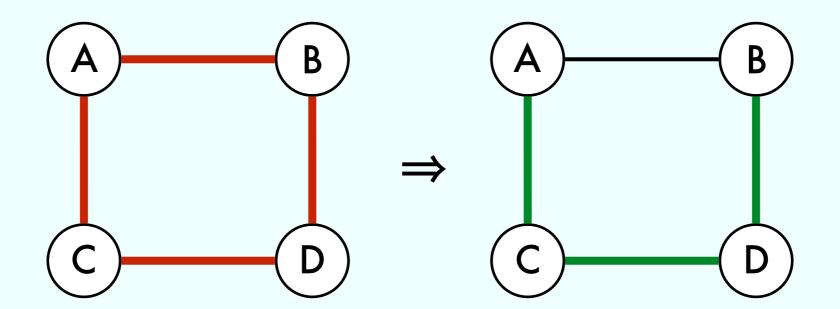


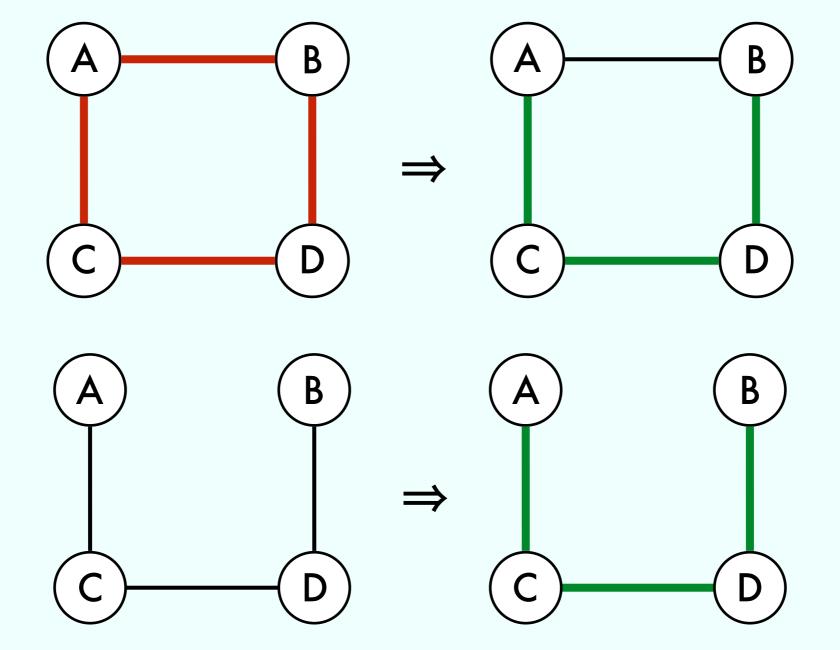
Hamiltonian Cycle
Hamiltonian path that is a cycle

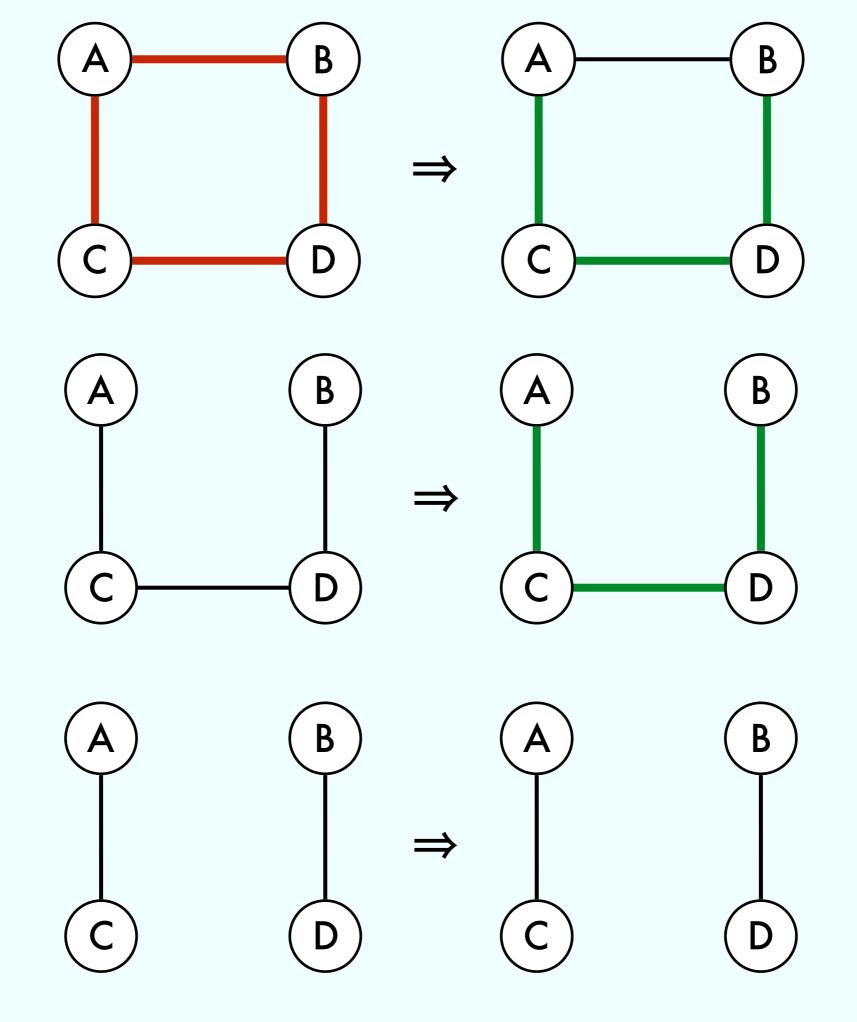


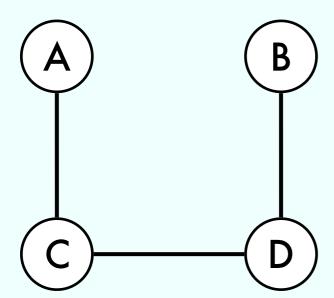
Assume you have hasHCycle(G)

Implement hasHPath(G)

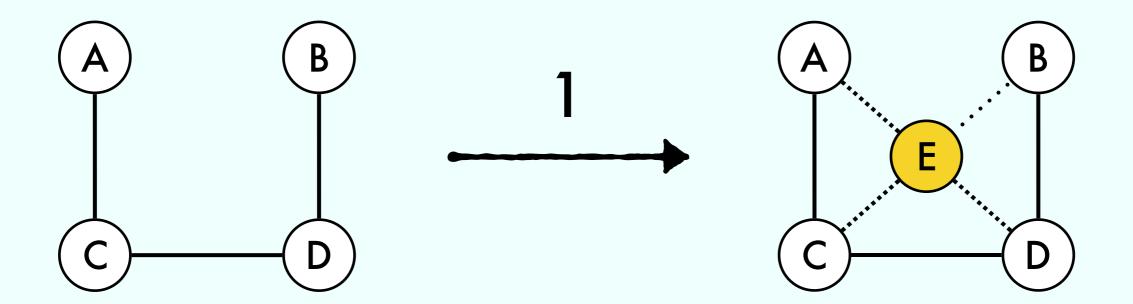


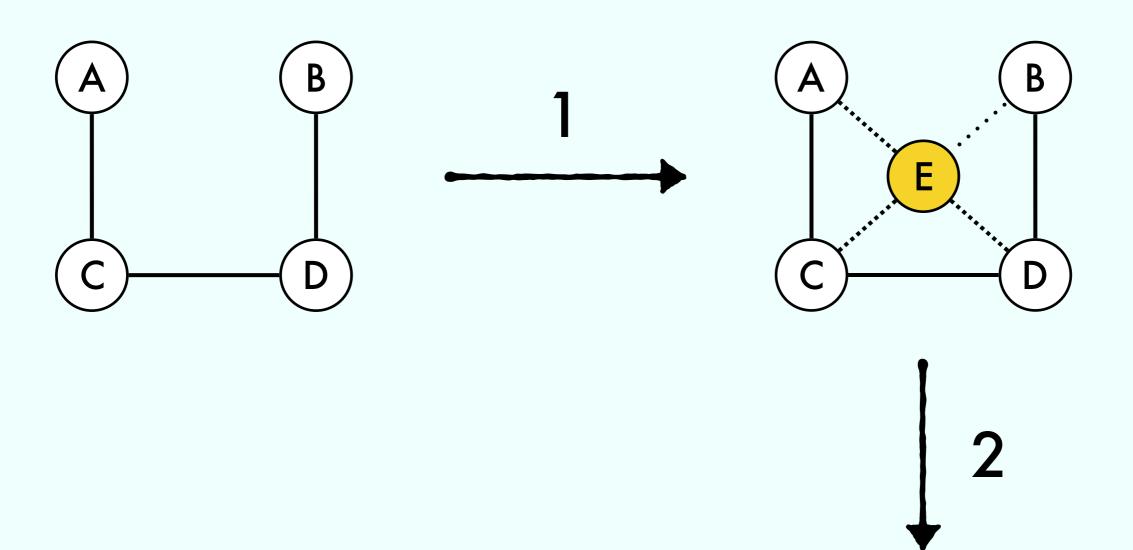


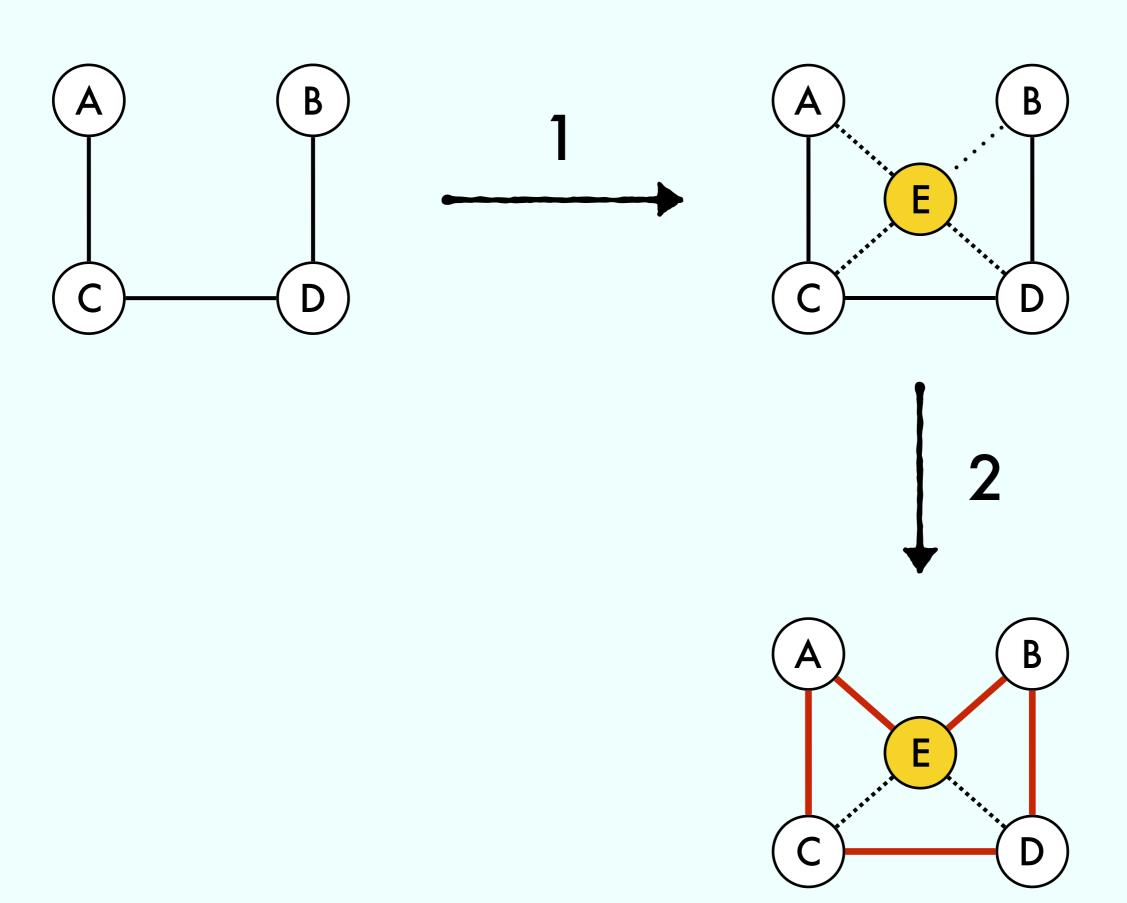


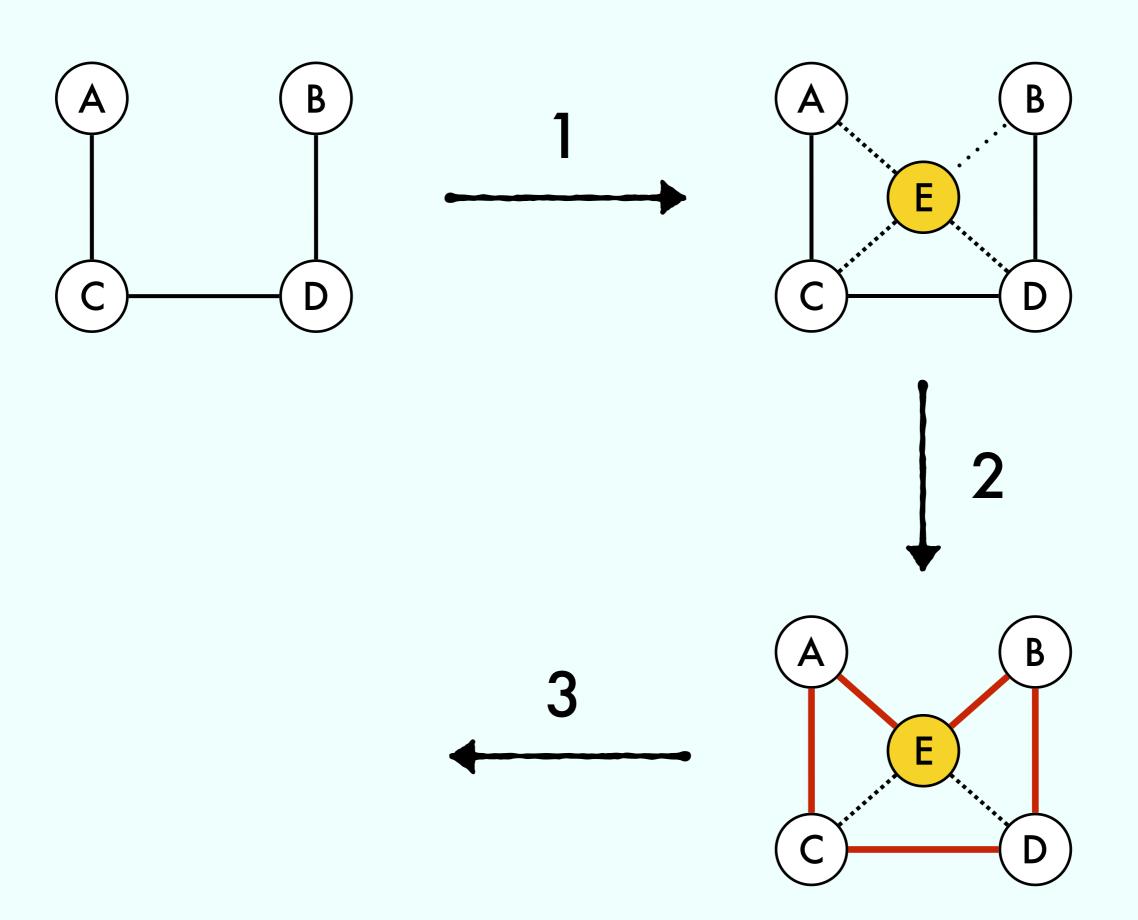


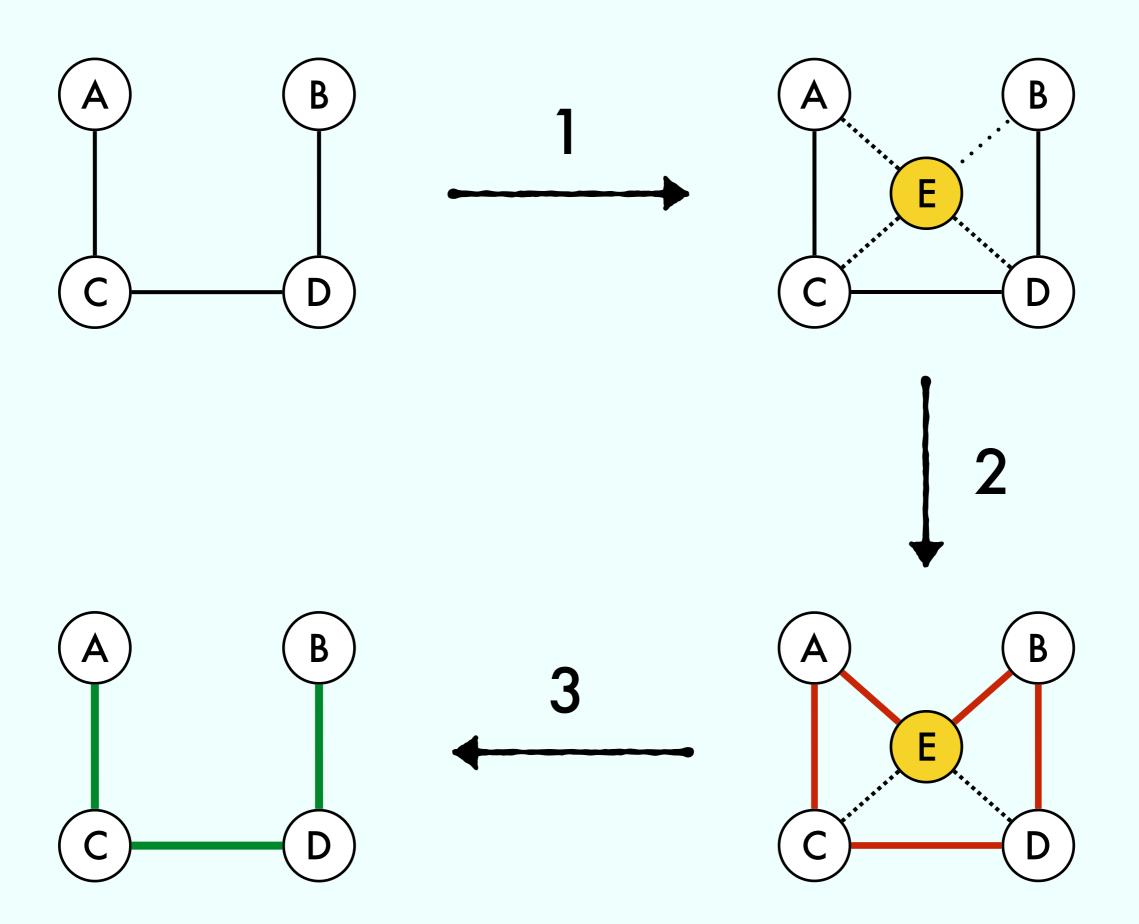


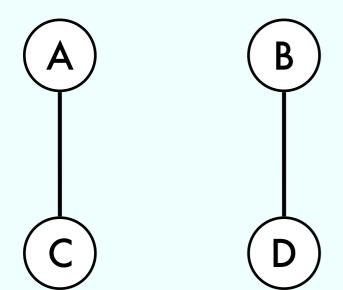


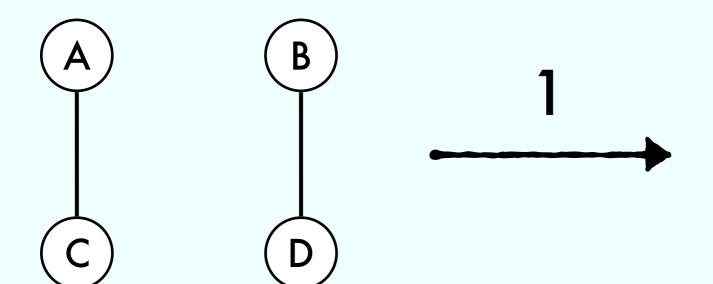


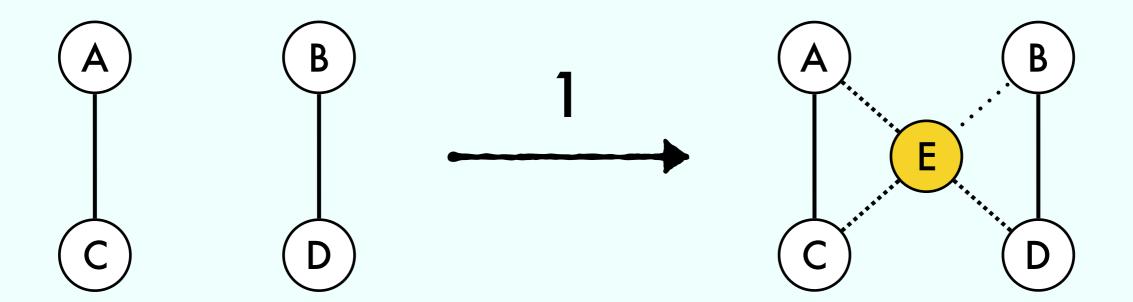


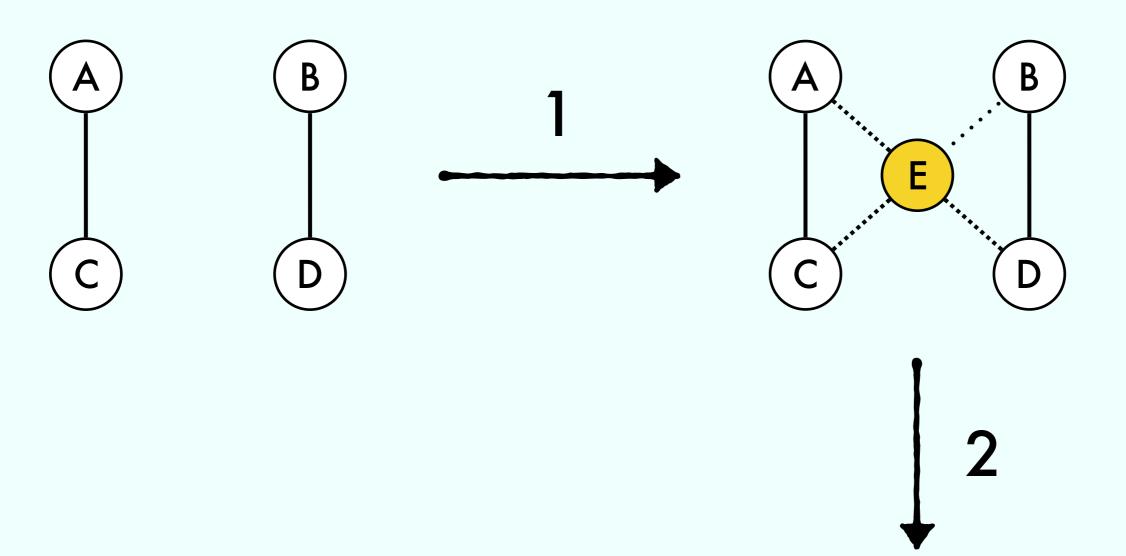


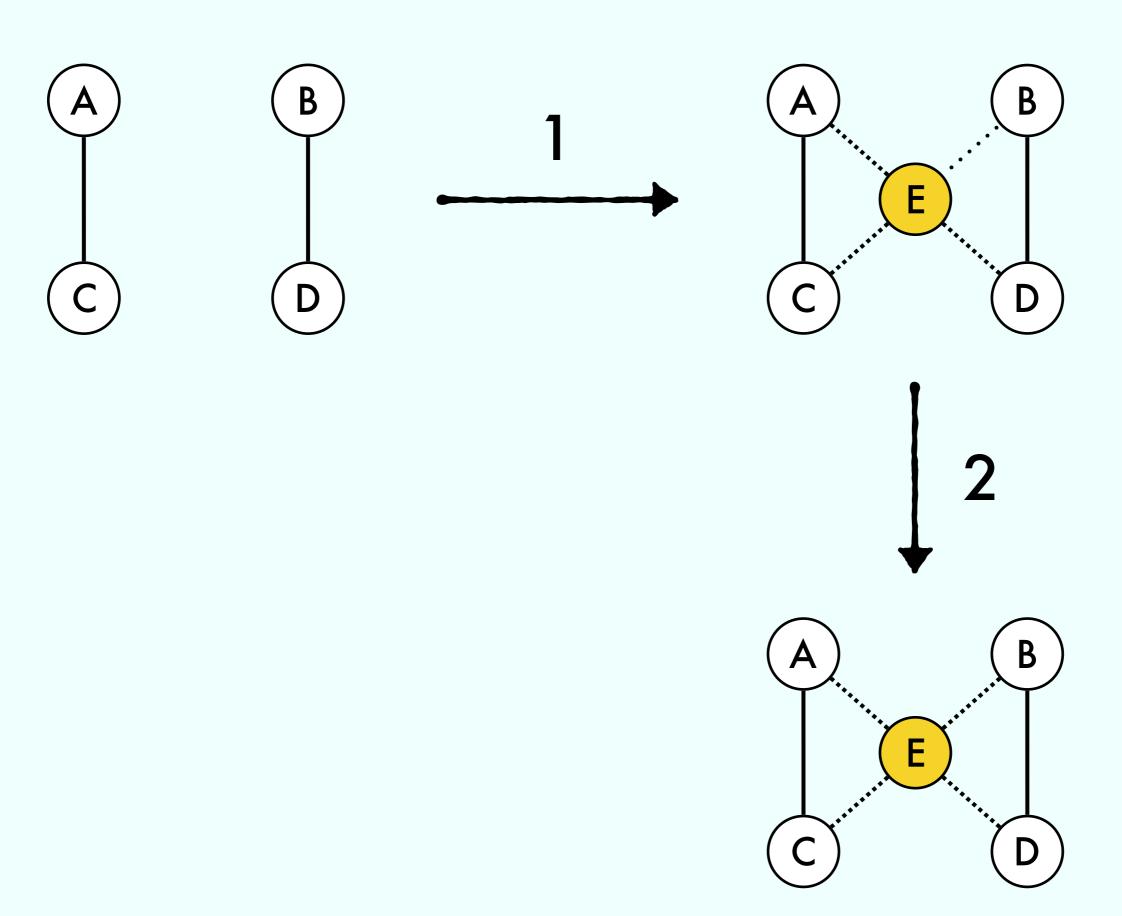


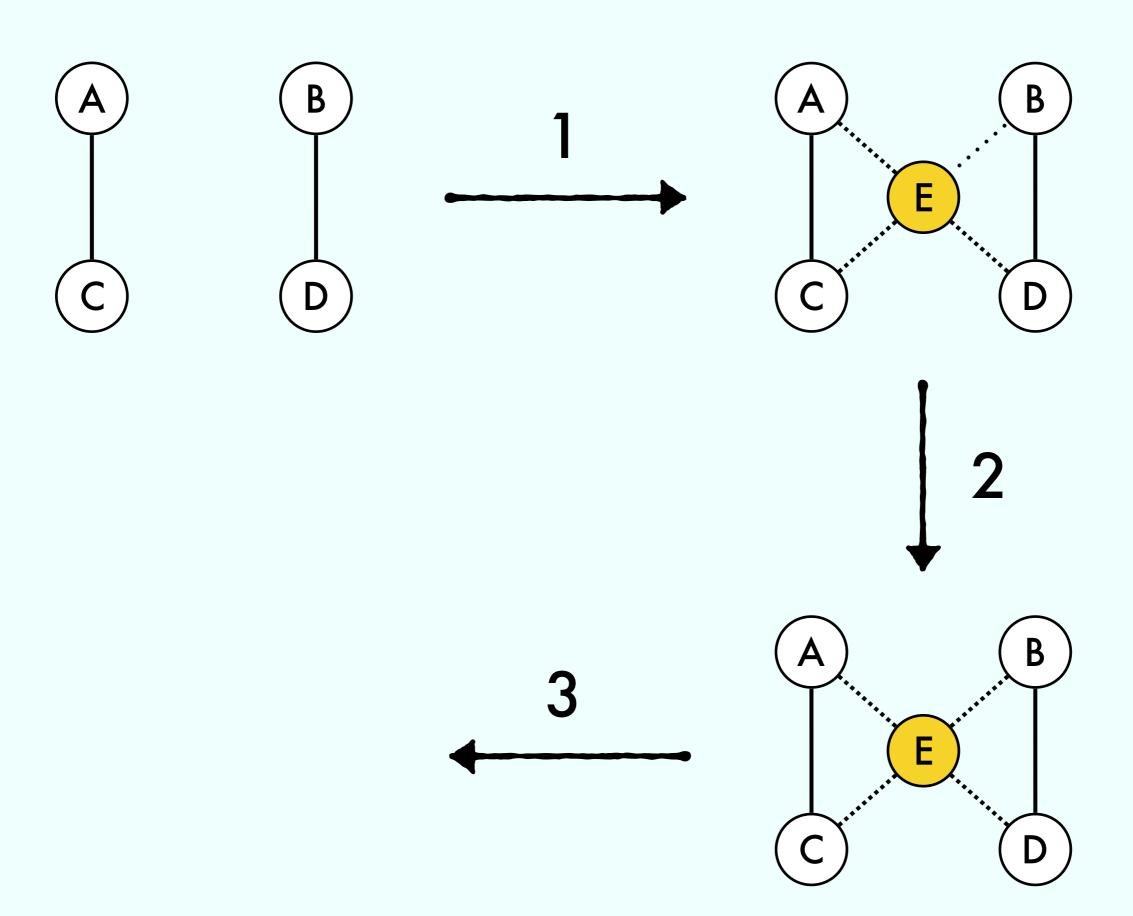


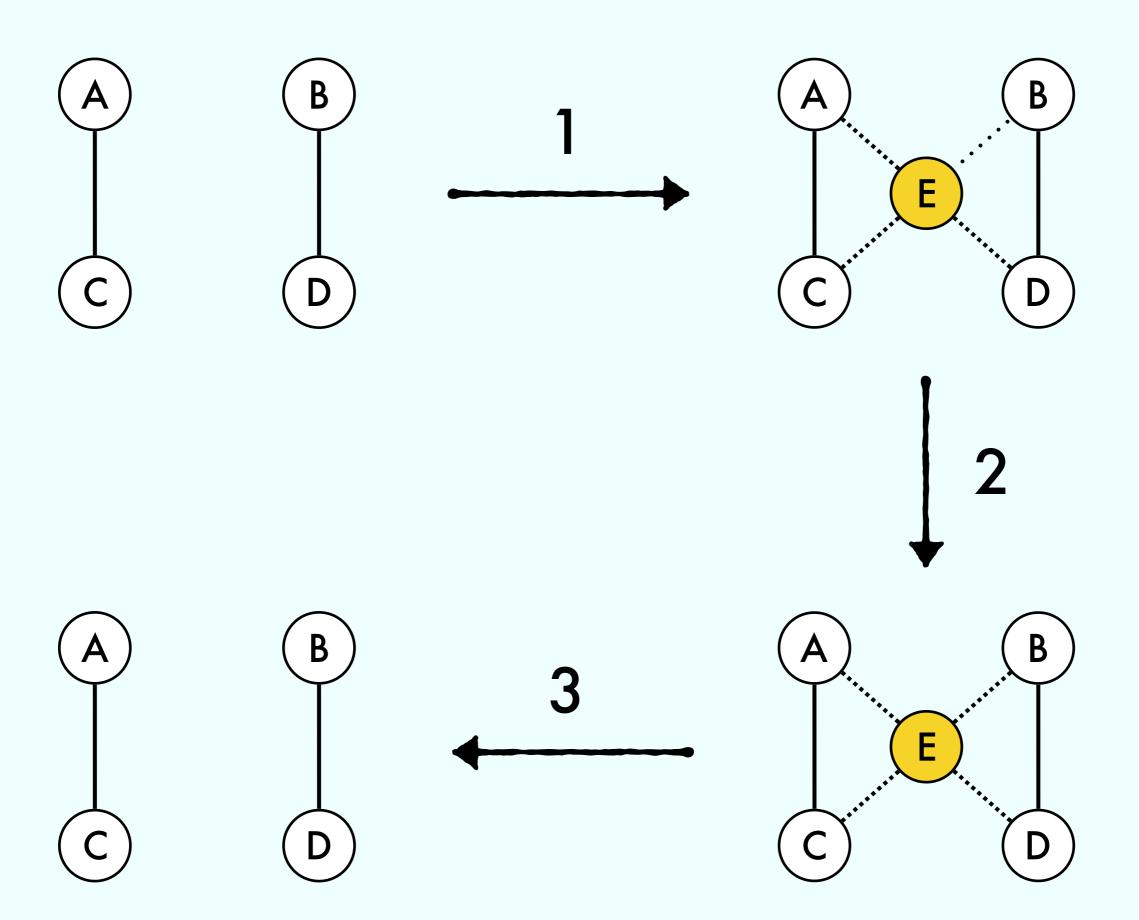












Theorem

H. Path in G

H. Cycle in G*