
Data Structures
Exercise: Search Trees

Unbalanced
Binary Search Tree

Time Complexity:

▶ member, insert, delete:

𝑂 (height).

▶ Height : Worst case: Θ (size).

12/12 1

Analyze the time complexity of the following code, expressed in n:

for (int i = 0; i <n; i ++) {

t.insert (i); }

Use the course's uniform cost model, and make the following assumptions:

• That n is a non-negative integer, and that the type of int can represent all integers.

• That t is an unbalanced binary search tree that initially is plot.

• That the common order for integer (... <-1 <0 <1 <2 <...) used when depositing in the
search tree.

Unnecessary precise analysis can be rejected; Please use Θ-notation.

P9

• Implement an operation which reverses a binary search tree. Explain why it is
correct. Analyse its time complexity.

• Modify the binary tree data structure so that reversal can be implemented in
constant time. The asymptotic worst-case time complexities of other
operations should not change.

Reverse a BST

• Swap Left and Right
Trees

AVL Trees

▶ Binary search tree.

▶ Invariant (for each node):

The height of the left and right tree trees differs maximum of 1.

▶ Height: Θ (log).

▶ Because the height is Θ (log), it takes all operations (log).

P10

• Implement a procedure which checks if a binary tree is an AVL tree (i.e. a
search tree satisfying the AVL tree balancing invariant). The procedure's
worst-case big-O time complexity should be as low as possible (assuming that
tree elements can be compared in constant time).

13/04 1
Analyze the time complexity of the following code, expressed in n:

for (int i = 0; i <n; i ++) {

for (int j = 0; j <i; j ++) {

t.insert (n);

}

}

Use the course's uniform cost model, and make the following assumptions:

• That n is a non-negative integer, and that the type of int can represent all integers.

• That t is an AVL tree that is initially empty.

• That the common order for integer (... <-1 <0 <1 <2 <...) used when depositing in the tree.

• If the same element is inserted twice in the tree, it will be written previous occurrence over.

Unnecessary precise analysis can be rejected; Please use Θ-notation

12/08 3
Describe an algorithm that
converts a sorted array into

one AVL tree.

12/12 4

The task is to construct a data structure for an image ADT with following operations:

new map () Constructs an empty image.

insert (,) Adds the pair (,) to the image.

member () Determines if there are any pairs (,) in the image.

nth-smallest () Can only be run if is a positive integer and image contains at least
elements.

You can assume that all keys and values are integers.

Time Complexity: new: (1), insert, member, nth-smallest: (log).

Find the n-th element in an AVL

References

• Data Structures 2016 – Exercise Slides by Marco Vaseena

• Open Data Structures

