
CRDT Sets: Theory &
Practice

Russell Brown
Basho Technologies

What?

• Why we need CRDTs

• What’s a CRDT, anyway?

• To a general CRDT set

What?

• Riak Set Data Type

• Delta-Sets

• “Big”sets

This project is funded by the European
Union,

7th Research Framework Programme, ICT
call 10,

grant agreement n°609551.

Why CRDTs?

Scale Up

$$$Big Iron
(still fails)

Scale Out

Commodity Servers
Distributed Systems

Multi Datacenter

DISTRIBUTED DATABASE

Trade Off

CAP

C A

http://aphyr.com/posts/288-the-network-is-reliable

http://aphyr.com/posts/288-the-network-is-reliable

C A

C A

C AP P

Consistency
There must exist a total order on all operations

such that each operation looks as if it were completed
at a single instant. This is equivalent to requiring requests of

the distributed shared memory to act as if they were
executing on a single node, responding to
operations one at a time.

--Gilbert & Lynch

One important property of an atomic read/write shared memory is that

any read operation that begins after a
write operation completes must return
that value, or the result of a later write
operation. This is the consistency guarantee that generally provides

the easiest model for users to
understand, and is most convenient for those attempting to design
a client application that uses the distributed service

--Gilbert & Lynch

Consistency

https://aphyr.com/posts/313-strong-consistency-models

Replica A Replica B Replica C

Client X Client Y

PUT “sue”PUT “bob”

NO!!!! :(

Consistent

Availability
Any non-failing node can respond to any

request

--Gilbert & Lynch

Replica A Replica B Replica C

Client X Client Y

PUT “sue”PUT “bob”

NO!!!! :(

Consistent

Consensus for a total
order of events

Requires a quorum

Coordination waits

Replica A Replica B Replica C

Client X Client Y

PUT “sue”PUT “bob”

Consistent

Client X put “BOB”

Client Y put “SUE”

Events put in a TOTAL ORDER

Eventual Consistency

Eventual consistency is a consistency model used in distributed
computing that informally guarantees that, if no new updates are
made to a given data item, eventually all accesses to that item
will return the last updated value.

--Wikipedia

https://aphyr.com/posts/313-strong-consistency-models

Replica A Replica B Replica C

Client X Client Y

PUT “sue”

C’

PUT “bob”

A’ B’

Available

Optimistic replication
(and logical clocks)

Reconcile
concurrency on read

No coordination for
lower latency

Replica A Replica B Replica C

Client X Client Y

PUT “sue”PUT “bob”

Low Latency

[c1] “sue”

[c1] “sue”[a1] “bob”

Problem?

Consistency
This is the consistency guarantee that generally
provides the easiest model for users to
understand, and is most convenient for those
attempting to design a client application that
uses the distributed service

--Gilbert & Lynch

Conflict!

Replica A Replica B Replica C

Client
GET

“Bob”

“Bob”

“Sue”

Eventual Consistency

Eventual consistency is a consistency model used in distributed
computing that informally guarantees that, if no new updates are
made to a given data item, eventually all accesses to
that item will return the last updated value.

--Wikipedia

Last Updated Value?

Convergence

Availability is great -
what’s my data?

It depends

Last Write Wins!

Replica A Replica B Replica C

Client
GET

“Bob” ts=1234”

“Bob” ts=1234

“Sue”
ts=1235

Physics Problem

4,148 km
14 ms Light
21 ms fibre

SF NY

PUT “bob”
1394382600000

PUT “sue”
1394382600020

Last Write Wins

Replica A Replica B Replica C

Client

“Sue”

LWW - A Lossy Total
Order

Conflict!

Replica A Replica B Replica C

Client
GET

“Bob”
[{a,1}]

“Bob”[{a,1}]

“Sue”
[{c, 1}]

Multi-Value

Replica A Replica B Replica C

Client

[“Bob”, “Sue”]
[{a,1}, {c, 1}]

MVR - A Partial Order

happens before

concurrent  ——— divergent

convergent

Logical Clocks

Summary

• Distributed systems for scale/fault tolerance/perf

• CAP trade-off

• Eventual consistency - concurrent writes

Semantic
Resolution

Dynamo
The Shopping Cart

A B

HAIRDRYER

A B

HAIRDRYER

A B

PENCIL CASE

HAIRDRYER

A B

PENCIL CASEHAIRDRYER

A B

[HAIRDRYER], [PENCIL CASE]

Converge
Set Union of Values

Simples, right?

Set Union?
“Anomaly”
Reappear

Removes?

Google F1
“We have a lot of experience with eventual
consistency systems at Google.”

“We find developers spend a significant fraction of
their time building extremely complex and error-
prone mechanisms to cope with eventual
consistency”

Google F1
“Designing applications to cope with concurrency
anomalies in their data is very error-prone, time-
consuming, and ultimately not worth the
performance gains.”

http://www.infoq.com/articles/key-lessons-learned-from-
transition-to-nosql

“…writing merge functions was
likely to confuse the hell out of all
our developers and slow down

development…”

Ad Hoc

What’s a CRDT?

State Based CRDT
Convergent

Join Semi-lattice

 Join Semi-lattice
Partially ordered set; Bottom; least upper bound

⊥ ⨆𝐒 ⟩⟨ , ,

Associativity: (X⨆Y)⨆Z = X⨆(Y⨆Z)

 Join Semi-lattice

Commutativity: X⨆Y = Y⨆X
 Join Semi-lattice

Idempotent: X⨆X = X

 Join Semi-lattice

Objects grow over time; merge computes LUB

 Join Semi-lattice

Examples

 Join Semi-lattice

b a c

a, b a, c

a, b, c

Set; merge function: union.

b, c

3 5 7

5 7

7

Increasing natural; merge function: max.

F F T

F T

T

Booleans; merge function: or.

Deterministic

Merge
Idempotent
Associative

Commutative

Principled
Merge

Reusable
Data Types

Defined Semantics

Evolution of a
CRDT Set

http://www.infoq.com/articles/key-lessons-learned-from-
transition-to-nosql

“…after some analysis we found that
much of our data could be modelled

within sets so by leveraging CRDT’s our
developers don't have to worry about

writing bespoke merge functions for 95%
of carefully selected use cases…”

Evolution of a
CRDT Set

Evolution of a Set

G-SET

Evolution of a Set

G-SET

Bob

Shelly

Bob

Pete

Shelly

Bob

Pete

Shelly

Anna

Joe

Bob

Pete

Shelly

Anna

Joe

Reece

Pete

Shelly

Alex

Bob

Pete

Shelly

Anna

Joe

Reece

Pete

Shelly

Alex

⨆

Bob

Pete

Shelly

Anna

Joe

Reece

Alex

Removes?

Evolution of a Set

G-SET
2P-SET

Adds Removes

Bob

Pete

Shelly

Bob

Pete

Shelly

Anna

Shelly

Adds Removes

Bob

Pete

Shelly

Bob

Pete

Shelly

Anna

Anna=

Value /= Structure

Adds Removes

Bob

Pete

Shelly

Bob

Pete

Shelly

Anna

Anna=

I changed
my mind!

CRDT Sets

answers the question of "what is in the set?" when presented
with siblings:

[x,y,z] | [w,x,y]

CRDT Sets

is w not added by A or removed by A?
is z not added be B or removed by B?

[x,y,z] | [w,x,y]

Evolution of a Set

U-SET

2

3

Bob

Pete

1 Shelly

4 Anna

6

7

Jack

Jed

5 Shelly

⨆

2

3

Bob

Pete

1,5 Shelly

4 Anna

6

7

Jack

Jed

Evolution of a Set

U-SET
OR-SET

Adds

2

3

Removes

Bob

Pete

1 Shelly

2

3

Bob

Pete

1 Shelly

4 Anna

Adds

2

3

Removes

Bob

Pete

1 Shelly

2

3

Bob

Pete

1 Shelly

4 Anna

5 Shelly

Adds

2

3

Bob

Pete

1 Shelly

Replica A

Adds

2

3

Bob

Pete

1 Shelly

Replica A

Remove

Removes

2

3

Bob

Pete

1 Shelly

Adds

Replica B

4 Anna

5 Shelly

Adds

2

3

Removes

Bob

Pete

1 Shelly

2

3

Bob

Pete

1 Shelly

⨆ Adds

4 Anna

5 Shelly

Adds

2

3

Removes

Bob

Pete

1 Shelly

2

3

Bob

Pete

1 Shelly

4 Anna

5 Shelly

Anna=
Shelly

Observed
Remove

Semantics

Add
Wins

Evolution of a Set

U-SET
OR-SET

Adds

2

3

Removes

Bob

Pete

1 Shelly

2

3

Bob

Pete

1 Shelly

4 Anna

5 Shelly

Anna=
Shelly

4 Anna

5 Shelly

[]

Evolution of a Set

U-SET
OR-SET

OR-SWOT

[{a, 1}]

{a, 1} Shelly

[{a, 1}] [{a, 1}

{a, 1} Shelly {a, 1} Shelly

[{a, 1}] [{a, 1}, {b, 3}]

{a, 1} Shelly

{b, 1}

{b, 2}

{b, 3}

Bob

Pete

Phil

{a, 1} Shelly

[{a, 1}, {b,3}] [{a, 1}, {b, 3}]

{a, 1} Shelly

{b, 1}

{b, 2}

{b, 3}

Bob

Pete

Phil

{a, 1} Shelly

{b, 1}

{b, 2}

{b, 3}

Bob

Pete

Phil

[{a, 2}, {b, 3}]

{b, 1}

{b, 3}

[{a, 1}, {b, 4}]

Bob

Pete

{a, 1} Shelly

{b, 1}

{b, 2}

{b, 3}

Bob

Pete

Phil

{a, 1} Shelly

{a, 2} Anna {b, 4} John

[{a, 2}, {b, 3}]

{b, 1}

{b, 3}

[{a, 2}, {b, 4}]

Bob

Pete

{a, 1} Shelly

{b, 1}

{a, 2}

{b, 3}

Bob

Pete

Anna

{a, 1} Shelly

{a, 2} Anna

{b, 4} John

[{a, 2}, {b, 4}]

{b, 1}

{a, 2}

{b, 3}

Bob

Pete

Anna

{a, 1} Shelly

{b, 4} John

= Bob

Pete

Anna

Shelly

John

 CRDT Sets

a semantic of “Add-Wins”
via

 “Observed Remove”

CRDTs

• Principled Merge

• Data Types with Defined Semantic

• Fine Grained Causality

• minimal representation

CRDTs IRL

Replica A Replica B Replica C

Client X Client Y

PUT “sue”

C’

PUT “bob”

A’ B’

Available

Replica A Replica B Replica C

Client X Client Y

PUT “sue”PUT “bob”

Low Latency

[c1] “sue”

[c1] “sue”[a1] “bob”

Conflict!

Replica A Replica B Replica C

Client
GET

“Bob”

“Bob”

“Sue”

A B

[HAIRDRYER], [PENCIL CASE]

{“key”: “value”}

Sets

C1 C2

RIAK

GET Friends GET Friends

State To Client State

C1 C2

RIAK

[]

[]

State To Client

C1

RIAK

PUT [Rita]
[Rita]

State To Client

C2

RIAK

PUT [Sue]
{[Rita], [Sue]}

State To Client

C1

RIAK

PUT [Rita, Bob]

{[Sue], [Rita, Bob]}

State To Client

C2

RIAK

PUT [Rita, Sue, Bob]

Problem?
• Requires Read Your Own Writes consistency

• Client must manage Actors in set’s logical clock

• Client ensures invariants

• Serial actor, total order of events

• Read and Send all Data to Add/Remove an
Element??

Operations!

C1

RIAK

Add “Bob”

Operations!

C1

RIAK

Remove “Sue”

Operations!
Observed Remove

C1

RIAK

Remove “Sue” with Context

Operations!

C1

RIAK

GET Friends -> [Bob, Rita, Sue]
[{a,1}, {b, 3}]

Operations!
Observed-Remove

C1

RIAK

Remove “Sue” with Context [{a,1}, {b, 3}]

Riak 2.0
Riak Data Types

Riak_DT
CRDTs

[{a, 2}, {b, 2}]

{b, 1}

{a, 2}

[{a, 1}, {b, 3}]

Y

Z

{a, 1} X

{b, 1} Y

{a, 1} X⊔ =

[{a, 2}, {b, 3}]

{b, 1} Y

{a, 1} X

{a, 2} Z

{b, 2} W

{b, 3} A {b, 3} A

Sets in Riak

An optimized conflict-free replicated set
Annette Bieniusa et al

http://arxiv.org/abs/1210.3368

http://arxiv.org/abs/1210.3368

Sets in Riak

Sets in Riak

Sets in Riak

PHOTO © 2011 J. RONALD LEE, CC ATTRIBUTION 3.0.
https://www.flickr.com/photos/jronaldlee/5566380424

https://www.flickr.com/photos/jronaldlee/5566380424

Teach Riak about CRDTs

• API Boundary

• Syntactic merge riak_object:merge

• Version Vector merge and sibling storage

• CRDT == no siblings

Problem?

Use Case
• bet365 million pound customer

• Use CRDT sets for open bet tracking

• Partition Riak Sets

• Performance - write speed

• Size - cardinality

Use Case
• NHS England

• Use CRDT sets for mailbox app

• Truncate/archive older messages

• Performance - write speed

• Size - cardinality

Problem?

• Poor Write speed
• Can’t have “big” sets

Sets in Riak

Sets in Riak

10k sets, 100k elements, 50 workers - write

Sets in Riak
• read at replica

• deserialise

• mutate

• serialise

• write

Sets In Riak

• replicate FULL STATE

• (read, deserialise? merge? serialise?, write?)

• ? riak_object.vv

• Accidental Optimisation

Every time we change the
set we read and write the

whole set!

Delta-Sets
• Only replicate the Delta - the change

• The delta is element + causal tag

• Can be “Joined” like full state

• Idempotent/Associate/Commutative

• Efficient State-based CRDTs by Delta-Mutation -
Paulo Sérgio Almeida et al

Delta-Sets in Riak
• Still read whole set to generate delta

• Still read whole set to merge delta - in fact MUST

• (read, deserialise! merge! serialise! write!)

• Database - disk i/o is THE thing

• Delta is always concurrent/sibling

• Save on the network, pay on the disk

Sets in Riak

Small : riak object
1MB limit

Disconnect

• Paper - minimal model to express innovation

• A set Actors, each a replica

• A single CRDT in memory

• Reads are R=1

Disconnect
• Riak - A real world industrial database product

• Many Keys, many CRDTs

• Durably stored on Disk - serialisation

• Clients act remotely on State

• One Key, One Set O(n)

Problem Summary

• Join is expensive

• Serialisation/Deserialisation dance wasteful

• Disk i/o matters to a database!

Bigsets:
Make writes faster

and
sets bigger

Bigset Design: Overview

Bigset Design: Overview

Bigset Design: Overview

• Decomposed

• A clock, and some elements

• each gets a key in leveldb

Initial Results

Initial Results

10k sets, 100k elements, 50 workers - write

10k sets, 100k elements, 50 workers - write

One small change

• Thinking from the bottom up

• Thinking about the disk and the database

• NOT a theoretical model

Bigset Design: write
• read clock

• increment

• assign dot to element

• store clock+element

• replicate delta

Bigset Design: write

• read clock

• if seen dot, ignore

• else add dot to clock

• store clock+element

Bigset Design: Clock

• Base VV [{actor, counter}]

• “dot-cloud” [{actor, [counter]}]

Bigset Design: Clock
Gaps?

A CB

Add “x” Add “y” Add “z”

Bigset Design: Clock
Gaps?

A CB

{a, 1} {b, 1} {c, 1}x zy

Bigset Design: Clock
Gaps?

A CB

{a, 1} {b, 1} {c, 1}x zy

x{a,1}->x

Bigset Design: Clock
Gaps?

A CB

{a, 1} {b, 1} {c, 1}x zy

x{b,1}->y

Bigset Design: Clock
Gaps?

A CB

{a, 1} {b, 1} {c, 1}x

x

A

{a, 1}

B

{b, 1}

Bigset Design: Clock
Gaps?

A CB

{a, 1} {b, 1} {c, 1}x

x

A

{a, 1}

B

{b, 1}

Add “n” Add “o” Add “p”

Bigset Design: Clock
Gaps?

A CB

{b, 1} {c, 1}x

x

A

{a, 1}

B

{b, 1}

Add “n” Add “o” Add “p”

{a, 1}

{a, 2} {b, 2} {c, 2}

Bigset Design: Clock
Gaps?

A CB

{b, 1} {c, 1}x

x

A

{a, 1}

B

{b, 1}{a, 1}

{a, 2} {b, 2} {c, 2}

{a,2}->n

Bigset Design: Clock
Gaps?

A CB

{b, 1} {c, 1}x

x

A

{a, 1}

B

{b, 1}{a, 1}

{a, 2} {b, 2} {c, 2}

{c,2}->p

Bigset Design: Clock
Gaps?

A CB

{b, 1} {c, 1}x

x

A

{a, 1}

B

{b, 1}{a, 1}

{a, 2}{b, 2} {c, 2}

A

{a, 2} {a, 2}

C

{c, 2}

C

{c, 2}

B

{b, 2}

Bigset Design: Clock
Gaps?

C

{c, 1}

{a, 2} {c, 2}

A B

{b, 2}

{a, 7}

{b, 3}

{b, 200}

Bigset Design: elements
• <<Set, Element, Actor, Cnt>> so Actor,Cnt make a

dot

• Times/Space trade off for concurrent elements

• Ordered by Set, Element, Actor, Cnt

• c++ key comparator for leveldb

• No serialisation - fast writes

Bigset Design: End Key

• <<Set, $z>>

• Sorts last

Bigset Design:Sorting

• Clock first, then elements, the end key

• For each set the keys are contiguous

Reads?

Initial Read Results

10k sets, 100k elements, 20 workers - read

Bigset Design: Read

• Iterate over many keys

• Leveldb iterate -> erlang fold

Bigset Design: Read
• “Streaming Fold” over Set (start-to-key-end key in a

buffer)

• Configurable chunks, say 100k elements

• Stream keys in batches to read_fsm - back pressure

• Read fsm incremental ORSWOT merge over R
replicas

• stream results to client

Bigset Design
clock

element-N

end_key

set-tombstone

element-1

Bigset Design: read

Client X

read fsm

block1

replica A replica C

block1

blockN

block1

blockN

incremental merge

blockN

Reads Today

10k sets, 100k elements, 20 workers - read

Reads Today

10k sets, 100k elements, 20 workers - read

Full Set Read or Queries?

• Decomposed design enables queries

• Is Member

• subset queries - per vnode is c++

• Range queries SORTED!

• Pagination

Is Member(X)

Client X

read fsm

is_member(<<bob>>).

replica A replica C

read(<<bob>>)

Is Member(X)
Replica A

{ReplicaA, clock} [{a, 3}, {b,3}]

{<<bob>>, a, 1} <<>>

{<<bob>>, b, 2} <<>>

{<<shelly>>, b, 1} <<>>

{ReplicaA, end_key} <<>>

read clock

{<<anne>>, a, 3} <<>>

Seek <<bob>>

Is Member(X)
Replica A

{ReplicaA, clock} [{a, 3}, {b,3}]

{<<bob>>, a, 1} <<>>

{<<bob>>, b, 2} <<>>

{<<shelly>>, b, 1} <<>>

{ReplicaA, end_key} <<>>

read clock

{<<anne>>, a, 3} <<>>

Seek <<bob>>

Is Member(X)
Replica A

[{a, 3}, {b,3}]

<<bob>> [{a,1}, {b,2}]

read fsm

<<bob>> Set

Replica C

[{a,3}, {c, 1}]

<<bob>> [{c, 1}]

Is Member(X)

⊔
=
[{a, 3}, {b,3}]

<<bob>> [{a,1}, {b,2}]

[{a,3}, {c, 1}]

<<bob>> [{c, 1}]

=
=<<bob>> [{b,2}, {c,1}]

Read FSM

{true, [{b,2}, {c, 1}]}
Client X

Removes

• Observed-Remove - context

• Requires _some kind_ of read

• cheap membership check

Sets in Riak

• Adds are removes!

• Action-at-a-distance!

• Clients are NOT replicas

Adds are removes

[{a, 1}, {b, 4}, {c,1}]

{b, 1}

{b, 2}

{b, 3}

Bob

Pete

Phil

{a, 1},
{c, 1}

Shelly

{b, 4} John

Add “Shelly”

replica b

Adds are removes

[{a, 1}, {b, 5}, {c,1}]

{b, 1}

{b, 2}

{b, 3}

Bob

Pete

Phil {a, 1}
{c, 1}

Shelly

{b, 4} John

Not concurrent -
Seen

replica b

{b, 5} Shelly

Action-at-a-Distance

[{a, 1}, {b, 4}, {c, 1}

{b, 1}

{b, 2}

{b, 3}

Bob

Pete

Phil

{b, 4} John

replica b

{a, 1}
{c, 1}

Shelly Client XAdd “Shelly”

Action-at-a-Distance

[{a, 1}, {b, 4}, {c, 1}

{b, 1}

{b, 2}

{b, 3}

Bob

Pete

Phil {a, 1}
{c, 1}

Shelly

{b, 4} John

Are adds removes?
Concurrent?

Seen?

replica b

{a, 1}
{c, 1}

Shelly

?

Contexts & Consistency

• add X no ctx

• empty ctx - always concurrent (safe!)

• local ctx - non-deterministic (could remove all,
some, none other X)

• depends on handling vnode’s state

Contexts & Consistency

• add X + per element ctx

• only removes observed X regardless of handling
vnode

• mmmm, deterministic outcome

Bigset

• Adds are removes!

• They need a context

• Cheap is_member(X)

Elided Complications
• Hand-Off

• 1-way Full state merge

• Without reading keys on receiving side!

• Event Set Maths

• Anti-Entropy

• Read Repair

• Multi-Data-Center

• MUST read full set at sender

• Read full state at receiver?

• Would be bad

Bigset Handoff

• Sender sends keys

• Keys receiver hasn’t seen - store

• key receiver has seen - ignore

• Only read clock!

Bigset Handoff

• Sender doesn’t send keys it has removed

• key receiver never saw - merge clocks

• Just read clock!

• key receiver saw - add to set-tombstone

Bigset Handoff

• (Compact) Set of causal tags of removed keys

• Stored like on disk in a key

Set-Tombstone

• handoff receiver state

• On sender clock_key

• C=clock, T=bigset_clock:fresh()

• for each key received add dot to tracker

Bigset Handoff

• On end_key

• C - T = Removed Dots

• ToRemove = Receiver Clock intersected with
Removed Dots

• Receiver Tombstone + ToRemove

Bigset Handoff

Compaction
• set-tombstone - logical clock/set of dots

• leveldb compaction

• if dot < set-tombstone discard

• set-tombstone = set-tombstone - dot

• tell vnode after compaction “remove dots
[dot()] from set-tombstone”

Next?
• Production level code for Riak 2.x

• Causal Consistency

• More types - “Big”Maps

• Tables of Maps or Sets

• SQL over Eventual Consistency

Summary
• Eventual Consistency buys you low latency &

availability

• Conflicts can be hard for application developers

• CRDTs help

• A little engineering goes a long way

• Decomposition brings complications too

