CRDT Sets: Theory &
Practice

Russell Brown
Basho Technologies

What"/

« Why we need CRDTs
 What's a CRDT, anyway”?

* To a general CRDT set

What"/

* Riak Set Data Type
* Delta-Sets

 "Big“sets

N SYMCFREE /X

This project is funded by the European
Union,
/th Research Framework Programme, ICT
call 10,
grant agreement n°609551.

mCRDTS?

Scale Up

$$$Big Iron
(still fails)

sriak

Scale Out

Commodity Servers
Distributed Systems
Multi Datacenter

sriak

DISTRIBUTED DATABASE

sriak

OMm/DOStS e-network-is-reliable

C A

ttp://ap

http://aphyr.com/posts/288-the-network-is-reliable

AP

Consistency

There must exist & tOtal order on all operations
such that each operation looks A8 if it were COH]plEtEd
at a Single instant. this is equivalent to requiring requests of

the distributed shared memory to aCt asS if they WEre
eXECUting on a Single nOde,responding to

operations one at a time.

--Gilbert & Lynch

Consistency

One important property of an atomic read/write shared memory is that

any read operation that begins after a
write operation completes must return
that value, or the result of a later write
Operation. This is the consistency guarantee that generally provides

the easiest model for users to

underStand, and 1s most convenient for those attempting to design
a client application that uses the distributed service

--Gilbert & Lynch

Serinlizable

N

Serializauble

/ 0\
RR 5T

hitps://aphyr.com/posts/313-strong-consistency-models

/ / NOI! <

PUT ‘bob’ -\ PUT “sue’

| cienx

Consistent

Availability

Any non-failing node can respond to any
request

--Gilbert & Lynch

/ / NOI! <

PUT ‘bob’ -\ PUT “sue’

| cienx

Consistent

Consensus for a total
order of events

Reqguires a guorum

Coordination waits

G ,
Replica A Replica C

[|

PUT ‘bob” PUT “sue”

| cienx

Consistent

Fvents put in a TOTAL ORDER

Client X put “BOB” |
Client Y put “SUE”

Eventual Consistency

Eventual consistency is a consistency model used in distributed
computing that informally guarantees that, if no new updates are
made to a given data item, eventually all accesses to that item

will return the last updated value.

--Wikipedia

Serinlizable

N

Serializauble

/ 0\
RR 5T

hitps://aphyr.com/posts/313-strong-consistency-models

Replica A

Replica C
|

[g

PUT bob’ -\ PUT “sue”

Avallable

Optimistic replication
(and logical clocks)

Reconcile
concurrency on reao

No coordination for
lower latency

~ [c1] “sue”
Replica A Replica C
I—

/ ra1] “bob” [c1] “sue”

\\
\

PUT "bob” PUT “sue”

| cienx

| ow Latency

Problem??

Consistency

This is the consistency guarantee that generally
provides the easiest model for users to
understand, and is most convenient for those
attempting to design a client application that
uses the distributed service

--Gilbert & Lynch

‘Bob” \
Replica A Replica C
5or (/ ‘Sue” «

GET

Conflict!

Eventual Consistency

Eventual consistency is a consistency model used in distributed
computing that informally guarantees that, if no new updates are

made to a given data item, eventually all accesses to
that item will return the last updated value.

--Wikipedia

| ast Updated Value®”

Convergence

Avallapllity Is great -
what's my data”

't dependads

‘Bob” ts=1234

—

“BOb” tS:123 ((Sue!!
ts=1235"

| ast Write Wins!

Physics Problem

fima,

‘}
L A&
B
PUT “sue”

PUT “bob” . “’
1394382600000 . "\1394382600020

SF NY

4 148 km
14 ms Light
21 ms fibre

Replica A Replica C

| ast Write Wins

L WW - A Lossy lotal
Order

Replica C

Replica A Replica C

[“Bob”, “Sue”]
[{a, 1}, {c, 1}]

Multl-Value

MVR - A Partial Order

Logical Clocks

write
handled by Sx

v

D1 ([Sx,1])

write

happens betore handled by Sx

v

D2 ([Sx,2])

write write
handled by Sy handled by Sz

concurrent

, D3 ([Sx,2],[Sy,1]) D4 ([Sx,2],[Sz,1])
divergent

reconciled
and wntten by

convergent D5 ([Sx.3L.[Sy.11[Sz,1])

summary

 Distributed systems for scale/fault tolerance/perf
 CAP trade-oft

* Eventual consistency - concurrent writes

if {resultlhaSConfiicts{)) {
TODO: What should we do???

Semantic
Resolution

Dynamo
ThE Shopping Cart

= =

HAIRDRYER

]

PENCIL CASE

A

ey

[HAIRDRYER], [PENCIL CASE]

ok

Converge

Set Unhion of Values
Simples, right?

Removes?

set Union?
sAnomaly”
Reappear

Google F1

“We have a lot of experience with eventual
consistency systems at Google.”

“We find developers spend a significant fraction of
their time building extremely complex and error-
prone mechanisms to cope with eventual
consistency”

Google F1

“Designing applications to cope with concurrency
anomalies in their data Is very error-prone, time-
consuming, and ultimately not worth the
performance gains.”

"...writing merge functions was
Ikely to confuse the hell out of all
our developers and slow down
development...”

http://www.infog.com/articles/key-lessons-learned-from-
transition-to-nosq|

-
D
N
-
]
3

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

A comprehensive study of
Convergent and Commutative Replicated Data Types

Marc Shapiro, INRIA & LIP6, Paris, France
Nuno Preguiga, CIT1, Universidade Nova de Lisboa, Portugal
Carlos Baquero, Universidade do Minho, Portugal

Marek Zawirski, INRIA & UPMC, Paris, France

What's a CRDT?

State Based CRDT
Convergent

Join Semi-lattice

sriak

Join Semi-lattice

Partially ordered set; Bottom; least upper bound

¢S, L, 1)

Join Semi-lattice

Associativity: (XuY)uZ = Xu(YuZ)

Join Semi-lattice

Commutativity: XuY =YuX

Join Semi-lattice

ldempotent: XuX = X

Join Semi-lattice

Objects grow over time; merge computes LUB

sriak

Join Semi-lattice

Examples

e
) Q ()

Set; merge function: union.

/@\

() @)
/NN
O © O

Increasing natural; merge function: max.

vierge

Deterministic
ldempotent
ASsociative

Commutative

ncipled
Me%e

Reusable
Datahliypes

Pefined Semantics

Evelution of a
CRDT Set

"...after some analysis we found that
much of our data could be modelled
within sets so by leveraging CRDT’s our
developers don't have to worry about
writing bespoke merge functions for 95%
of carefully selected use cases...”

http://www.infog.com/articles/key-lessons-learned-from-
transition-to-nosq|

Evelution of a
CRDT Set

Evolutiontef a Set

G-SET

Evolutiontef a Set

G-SET

Removes?

Evolutiontef a Set

G-SET
2P-SET

Removes

Shelly Shelly

Bob

Pete

Removes

Shelly

Shelly

Bob

Pete Pete

aluey/= Structure

Removes

Shelly

Shelly

Bob

Pete Pete

| changed
my‘mind!

CRDT Sets

answers the question of "what is in the set?" when presented
with siblings:

X.¥,Z2] | [W,X,Y]

CRDT Sets

IS w not added by A or removed by A7
IS z not added be B or removed by B?

[X,v,2] | [w,X,V]

Evolutiontef a Set

U-SET

|-

Dl

Evolutiontef a Set

U-SET
OR-SET

Replica A

Replica A

Remove

Replica B

|

Anna

Shelly

Observed
Remove

Semantics

Add
Wins

Evolutiontef a Set

U-SET
OR-SET

|

11 Oct 2012

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

An Optimized Conflict-free Replicated Set

Annette Bieniusa, INRIA & UPMC, Pasis, France
Marek Zawirski, INRIA & UPMC, Paris, France
Nuno Preguiga, Crr1, Universidade Nova de Lisboa, Portugal
Marc Shapiro, INRIA & LIP6, Paris, France
Carlos Baquero, HASLab, INESC TEC & Universidade do Minho, Portugal
Valter Balegas, €111, Universidade Nova de Lisboa, Portugal

Sérgio Duarte ci11, Universidade Nova de Lisboa, Portugal |

Dotted Version Vectors: Logical Clocks for Optimistic Replication

Nuno Preguica
CITI/DI
FCT, Universidade Nova de Lisboa
Monte da Caparica, Portugal
nmp @di.fct.unl.pt

Carlos Baquero, Paulo Sérgio Almeida,

Victor Fonte, Ricardo Gongalves
CCTC/DI
Universidade do Minho
Braga, Portugal

{cbm,psa,vff} @di.uminho.pt, rtg@Isd.di.uminho.pt

Abstract

In cloud computing environments, a large number
of users access data stored in highly available storage
systems. To provide good performance to geographi-
cally disperse users and allow operation even in the
presence of failures or network partitions, these sys-
tems often rely on optimistic replication solutions that

........

The mentioned systems follow a design where the
data store is always writable. A consequence is that
replicas of the same data item are allowed to diverge,
and this divergence should later be repaired. Accurate
tracking of concurrent data updates can be achieved
by a careful use of well established causality tracking
mechanisms [5], [6], [7], [8]. In particular, for data
storage systems, version vectors [6] enables the system
to compare any pair of replica versions and detect if

Evolutiontef a Set

U-SET
OR-SET
OR-SWOT

[{a, 1}]

{a, 1} |Shelly

[{a, 1}] [{a, 1}, {b, 3}]

[{a, 1}, {b,3}] [{a, 1}, {b, 3}]

<

[{a, 2}, {b, 3}]

[{a, 1}, {b, 4}]

[{a, 2}, {b, 3}]

[{a, 2}, {b, 4}]

>

[{a, 2}, {b, 4}]

CRDT Sets

a semantic of “Add-Wins”
via
“Observed Remove”

CRDTs

* Principled Merge
* Data Types with Defined Semantic
* Fine Grained Causality

* minimal representation

CRDTs IRL

Replica A

Replica C
|

[g

PUT bob’ -\ PUT “sue”

Avallable

~ [c1] “sue”
Replica A Replica C
I—

/ ra1] “bob” [c1] “sue”

\\
\

PUT "bob” PUT “sue”

| cienx

| ow Latency

‘Bob” \
Replica A Replica C
5or (/ ‘Sue” «

GET

Conflict!

A

ey

[HAIRDRYER], [PENCIL CASE]

ok

{"key”: "value"}

sriak

State To Client State

RIAK

State To Client

RIAK

PUT [Rita]
[Rita]

State To Client

RIAK

PUT [Sue]
{[Rital], [Suel}

State To Client

RIAK

PUT [Rita, Bob]

{[Sue], [Rita, Bobl}

State To Client

RIAK

PUT [Rita, Sue, Bob]

@

Problem??

Requires Read Your Own Writes consistency
Client must manage Actors in set’s logical clock
* Client ensures invariants

e Serial actor, total order of events

Read and Send all Data to Add/Remove an
Element??

Operations!

RIAK

Add "Bob”

@

Operations!

RIAK

Remove “Sue’

@

Operations!
Observed Remove

RIAK

Remove “Sue” with Context

@

Operations!

RIAK

GET Friends -> [Bob, Rita, Sue]

@

[ia, 1}, {b, 3}

Operations!
Observed-Remove

RIAK

Remove “Sue” with Context [{a,1}, {b, 3}]

@

Riak 2.0

Riak Data lypes
Riak_DT
CRDTs

riak_dt _orswot

Version Vector

[{vhodeA, 10}, {vhodeB, 4}, {vhodeC,11}...]

Entries |

Bob = [{vnodeA,2)
Cameron {:’ [{vnodeB, 2}, {vnodeC, 5}]
Charlene {=> [{vhodeB, 4}]
Deferred O‘p?
[{vnodeA, 4}, {vhodeX, 22}] {=> Tim
[{vnodeB, 7}] {=> Zooey

[{a, 2}, {b, 2}] [{a, 1}, {b, 3}] [{a, 2}, {b, 3}]

= =

Sets In Riak

riak_dt orswot

—

Version Vector

[{vhodeA, 10}, {vhodeB, 4}, {vhodeC,11}...]

Entrie?
Bob = [{vhodeA, 2}]
Cameron P [{vhodeB, 2}, {vhodeC, 5}]
Charlene —» [{vnodeB, 4}]

L
Deferred Ops

[{vnodeA, 4}, {vnodeX, 22}] <

Tim

—P»
[{vhodeB, 7}] = Zooey

An optimized conflict-free replicated set
Annette Bieniusa et al
http://arxiv.org/abs/1210.3368

http://arxiv.org/abs/1210.3368

Sets in Riak

Version Vector

[{vhodeA, 10}, {vhodeB, 4}, {vhodeC,11}...]

#r_conterh
Metadata |

Dot —3P»| {vnodeA, 4}
27?7 —P» 27?7
EE—— ?27?7?7?

Sets in Riak

vhode backem

<<key>>

<<key>>

<<key>>

<<key>>

<<key>>

<<key>>

<<key>>

<<key>>

Sets in Riak

OTO © 2011 J. RONALD LEE, CC ATTRIBUTION 3.0.
https://www.flickr.com/photos/jronaldlee/5566380424

https://www.flickr.com/photos/jronaldlee/5566380424

Teach Riak about CRDTs

 API Boundary
* Syntactic merge riak_object:merge
* Version Vector merge and sibling storage

« CRDT == no siblings

Problem??

Use Case

* pbet365 million pound customer
 Use CRDT sets for open bet tracking
* Partition Riak Sets

* Performance - write speed

* Size - cardinality

Use Case

 NHS England

 Use CRDT sets for mailbox app

» Truncate/archive older messages
* Performance - write speed

* Size - cardinality

Problem??

 Poor Write speed

 Can't have “big” sets

SPUOIBSOIIN

Elements

30000

AN
20000

Latency (m

J

W
o

0000

N

l.atepcy (ms)

<O

o,
@ 30000 -

20000
o

Laten

J

—
@ 30000 -

= 20000
>L VUV

OO
0000

Latenc

~
J

14 NN
0000 -

N0 -
Q000

0

N
o -
o

Mean, Median, and 95th Percentile Latency

S

99th Percentile Latency

Throughput

Elapsed Secs

insert

Elapsed Secs

insert

TN
v

1000

N N N S N ST

.‘I

P

250

250

500

atef

Elapsed Secs

99.9th Percentile Latency
insert

Maximum Latency

500

Elapsed Secs

Elapsed Secs

1000

1000

1000

10k sets, 100k elements, 50 workers - write

AR _ B LN J

1250

Response
B error
= ok

Percentile
95th
mean

" median

Percentile
= 90th

Percentile
= 99.9th

Percentile
- max

Sets In Riak

* read at replica
 deserialise
* mutate
* gerialise

e Write

Sets In Riak

* replicate FULL STATE
* (read, deserialise” merge” serialise?, write”?)
* ?riak_object.vv

e Accidental Optimisation

Every time we change the
set we read and write the
whole set!

Delta-Sets

* Only replicate the Delta - the change
* [he delta is element + causal tag
* Can be “Joined” like full state
* |dempotent/Associate/Commutative

e Efficient State-based CRDTs by Delta-Mutation -
Paulo Sérgio Almeida et al

Delta-Sets in Riak

Still read whole set to generate delta
Still read whole set to merge delta - in fact MUST
* (read, deserialise! merge! serialise! write!)
* Database - disk i/o is THE thing
Delta is always concurrent/sibling

e Save on the network, pay on the disk

Sets In Riak

Small : riak object
TMB [imit

Disconnect

* Paper - minimal model to express innovation
* A set Actors, each a replica
* Asingle CRDT in memory

e Reads are R=1

Disconnect

* Riak - A real world industrial database product
 Many Keys, many CRDTs
* Durably stored on Disk - serialisation
* Clients act remotely on State

* One Key, One Set O(n)

Problem Summary

e Join is expensive
e Serijalisation/Deserialisation dance wasteful

e Disk i/o matters to a database!

Blgsets:
Make writes taster
and
sets bigger

Bigset Design: Overview

™
LevelDb

{SetX, VnodeA, clock} <

{SetX, VnodeA, tombstone}

{SetX, Bob, VnodeA, 2}

{SetX, Cameron, VnodeB, 2}

{SetX, Cameron, VnodeC, 5}

{SetX, Charlene, VnodeB, 4}

{SetX, endkey} <

riak dt orswot

Version Vector

|

[{vnodeA, 10}, {vhadeB, /}, {vnodeC,11}...]

vnode\t(a&«a?cq

—» {Setx,\QodeA, clock} <
: {SetX, VnodeA, tombstone} ¢
Entrles|
—” {SetX, Bob, VnodeA, 2}
Bob [{vnodeA, 2}]
—| {(SetX, Cameron, VnodeB, 2}
Cameron f=> [{vnodeB, 2}, {vnodeC, 5}]
- {SetX, Cameron, VnodeC, 5}
Charlene l < [{vnodeB, 4}] T ——
{SetX, Charlene, VnodeB, 4}
Deferred Ops | \l {SetX, endkey}
[{vnodeA, 4}, {vnodeX, 22)] J=b Tim

[{vnodeB, 7}] ' Zooey

Bigset Design: Overview

* Decomposed
e A clock, and some elements

* each gets a key In leveldb

INnitial Results

eeeeeeee

15000

Throughput

- . e .' :.. | . | . :\
§ e Response
@ = error
8 5000 - = ok
0 250 500 750 1000 1250
Elapsed Secs
Mean, Median, and 95th Percentile Latency
. insert
»12.5-
é'c- 0 Percentile
10 95th
Q 7.5~
= mean
% 5.0 - _ median
25-
0 250 500 750 1000 1250
Elapsed Secs
99th Percentile Latency
. insert
w16~ -
E . - - = °
=14 PR R PPPEIL I VOO | /. . P Byt o LR T L et i Al Y Percentiie
8. oty - o] e ltde P . ety ¥ s ct. s T, Wl » & - A AT Bt : S = 90th
%'Z . ‘.‘3 \..’:o ' - 3.‘. ". .0 “Peey T~ . 0.‘: . .':.1 o oo .t. .': "‘.2." * A, ':.‘ s '? o€
10- | . . ’ . o - .
0 250 500 750 1000 1250
Elapsed Secs
99.9th Percentile Latency
. insert
m .
§f1 00 - . .
3 . - o Percentile
S 50- +99.9th
5 |
1250
Elapsed Secs
Maximum Latency
insert
’a -
E.120- - -
> = . . . Percentile
g 80 = max
D 40-
3

500 750 1000 1250
Elapsed Secs

10k sets, 100k elements, 50 workers - write

o
N
-
o

Throughput

Throughput

1200 15000 .
; ? wew % i 3
Qo 900 o " -
3 AN 8 10000
a 600 B
Q S 5000-
O 300 (@]
0- , ‘ 0- ' . . .
0 250 500 750 0 250 500 750
Elapsed Secs Elapsed Secs
Mean, Median, and 95th Percentile Lat Mean, Median, and 95th Percentile Latency
insert insert
» 30000 wi2h- = s - —
‘c’-“"r"‘ - P . . . e ‘c, 7.5~
S 0000 - ° ‘ - 9 5.0- ¢ . L
S o , : . s 3 2s- . ' :
0 250 500 750 0 250 500 750
Elapsed Secs Elapsed Secs
99th Percentile Latency 99th Percentile Latency
insert insert
TéT:u': 000 - ’Ea?T 6-
20000 .v - L e 14
%) o
g 10000 - 7o~ el e] o 4 g 12
3 |‘: : L L L L L ----’ S EIE @0 W EmEne ® = .c——o-'—uuoc - - 3 .AC') . .
0 250 500 750 0 250 500 750
Elapsed Secs Elapsed Secs
99.9th Percentile Latency 99.9th Percentile Latency
insert insert
B 30001 M
é. gt 00 - . .
>‘ZC o0 - . -
Q Q
& 10000 & 50-
S |:) - - LR 1 - . - l' L - . L LR L - LA S
0 250 500 750 0 50 500
Elapsed Secs Elapsed Secs
Maximum Latency Maximum Latency
insert insert
@ 30000 - M
s E120- . .
20000 - o
8 » 8 80
g 10000 S 4.
S |: ‘I - LR 2 . . - . L e = L LR L - LA S
0 250 500 750 0))0
Elapsed Secs Elapsed Secs

10k sets, 100k elements, 50 workers - write

One small change

* Thinking from the bottom up
* Thinking about the disk and the database

e NOT a theoretical model

Bigset Design: write

* read clock

* Increment

* assign dot to element
* store clock+element

* replicate delta

Bigset Design: write

e read clock
* |f seen dot, ignore
e ¢lse add dot to clock

e store clock+element

Bigset Design: Clock

* Base VV [{actor, counter}]

» “dot-cloud” [{actor, [counter]}]

Bigset Design: Clock
Gaps”?

Add "X’ Add "y~ Add “Z"

Bigset Design: Clock
Gaps”?

Bigset Design: Clock
Gaps?

Bigset Design: Clock
Gaps”?

Bigset Design: Clock
Gaps”?

Bigset Design: Clock
Gaps”?

Add "n” Add 0" 5 Add "p”

Bigset Design: Clock
Gaps”

Add "n” Add 0" 5 Add "p”

Bigset Design: Clock
Gaps”?

Bigset Design: Clock
Gaps”?

/ {c,2}->p

T

Bigset Design: Clock
Gaps”

2. 2 o {C, 2]

ta, 18 b, 13

Bigset De?bn: Clock
Gaps”?

Bigset Design: elements

e <<Set, Element, Actor, Cnt>> so Actor,Cnt make a
dot

* Times/Space trade off for concurrent elements
* Ordered by Set, Element, Actor, Cnt
* C++ key comparator for leveldb

e No serialisation - fast writes

Bigset Design: End Key

e <<Set, $z>>

e Sorts last

Bigset Design:Sorting

e Clock first, then elements, the end key

* For each set the keys are contiguous

Reads”

MicroSeconds

INnitial Read Results

Ops/sec

4000 -

—
w
‘;:1:-:0 -

) -
(00

Throughput

.....%.:: .&..‘ :.“ - . L - - P ‘‘. - ... - d . - T - e

200 400 600

Elapsed Secs

Mean, Median, and 95th Percentile Latency

SREe e - . - oee LAL R L B J BREA S ANE M AR - L Ll Sl o L -'..C..... SRAAAM ARSI ARE N A A WIS l.....
0 200 400 600
Elapsed Secs

99th Percentile Latency
read

L T e e i e e il R 2 ‘!MM'*‘?’-‘"
/

SRS AL e L —— LR AR SRR S AR AR AR L ARAAARAARARERRIE L A0 S R AR R AR AR - ..-.'--....QQOIOD“C..
0 200 400 600

Elapsed Secs

99.9th Percentile Latency
read

I N :‘v.-‘?nq:oms'.-ng"" meﬂ'MQWc*M'NI{WwV,Moa'ap.?ac.-.\w.‘.r.l .“‘:‘54:-'{ ‘(MW\-J;“:«

/

SRR AL A » - LR SR SRR AR AR RRER AR AR R RRARRRRE S A -‘-Qnooooo AR AR SR A AR R R e e l..l..
0 200 400 600

Elapsed Secs

Maximum Latency
read

IR .-‘v.:r..q:o.;\.b;\—dﬁpfww,.'“‘w‘}um'mwﬂ'f,.uonﬁ‘s_?ac..s.w:.w '\,:s,,‘{ﬁ' 'emw\-c:-“':n

0 200 400 600
Elapsed Secs

10k sets, 100k elements, 20 workers - read

Response
error
ok

Percentile
95th
mean
[median

Percentile
=+ 99th

Percentile
= 99.9th

Percentile
“* max

Bigset Design: Reao

* |terate over many keys

* Leveldb iterate -> erlang fold

Bigset Design: Read

¢ “Streaming Fold” over Set (start-to-key-end key in a
buftfer)

e Configurable chunks, say 100k elements
e Stream keys in batches to read_fsm - back pressure

 Read fsm incremental ORSWOT merge over R
replicas

e stream results to client

Bigset Design

clock

set-tombstone

element- |

element-\N

end_key

Bigset Design: read

blockN blockN

block1 block

elenisigl Incremental merge

prCkN
biock 1

Opswec

Latency (ms) Latency (ms)

Latercy ()

Lmn?y (ms)

Reads loday

e

-

i |
*1
Ops'sec

Elapsed Secs

Mean, Median, and 95t Percentle Latency
read

: : : : 5 rucese | £ —
v“a - e
r—_ g o

[remten g | e

Llapsad Secs

90th Percentie Latency 991h Percentile Latency
et -t

S e " aAr AL Bt A ATV e e S ¥ 4 '\.-'i-’- A ow, o, UL L 'o_."'ﬁ-u\

.

g
= Poreontiie > — .y of o on - - — . - .. - Pervemtio
- — - — - g " R N e e e i T e e Wl e | - om
—4—“‘.\'— - Pl Bt vt g N A Aot atl e~ -~ . . wt
] AN .n-vaﬁ\.'?‘.". ',". L 3] .F:‘ Tis Yﬁ{-.. -'-(’.\- et Az, \" "‘,-'-N:'.", e o ..‘:"‘\‘;‘- ’_-{'(W
N | e — w——— - " — .y —— e — . —— T s — — S - - P - e - 3 - - - .

Elapand Secs) ‘ Elapaad Secs

99.9th Percentile Latency 99 .9th Percentile Latency
read o

N TR s N (AN NS INT N T 2 Sy I L8 M, SN T 0y NI e

I — — Porcantite

mrq ims)

L) -
A TR L L S PRI Ll L L. -y . B R MR e AATRAREE e ST 4 G R R R RE Ry TR e
Elapsed Secs Elapsed Secs
Maximum Latency Maximum Latency
read — ol
- - o .. ' . - . -~ - - e - .l - - -
g A SN AN T 2 ST 8 P, S TN B I e L e E -
R ———— — ~ — Percentite A . “~e 2 . = Porcontie
. aedan .y";:"’-'v-‘.v"-' N et -"»-‘ LA - -t 1: - o
e O O SN U R~ i A r o R o o
T B AN QTR R E SN 4 o mae AL B Be N MTE S e ATRAREE e SR 4 Se e R R RS e TE R B ER . e . .

Elapsed Secs ' Elapsed Secs

10k sets, 100k elements, 20 workers - read

Reads loday

40 Prconto Lotoncy 4 Prconto Lotocy
w ol

WOe A b e A

—— P

L,‘..-Ct »w Crras)

N A R et A et P o g R g A e P e

Elbpiad S | | Elbpiod Socs

10k sets, 100k elements, 20 workers - read

Full Set Read or Queries?

* Decomposed design enables queries
* |s Member
* subset queries - per vnode IS C++

* Range queries SORTED!

* Pagination

s Member(X)

read(<<bob>>)

read fsm

IS_member(<<bob>>).

Client X

's Member(X)

read clock ~_

ReplicaA, clocl 3 (b3
Seek <<bob>> [, 35, {b,3}]
— ST

{<<bob>>,a, |}

{<<bob>>, b, 2}

{<<shelly>>,b, I}

{ReplicaA, end_key}

's Member(X)

read clock
\
ReplicaA, clock 31 1h3
Seek <<bob>> [, 35, {b,3}]

'lll:'lll:
. nt .

{<<bob>>,a, |}

{<<bob>>, b, 2}

s Member(X)

[{a, 3}, {b,3]] [{a,3}, fc, 1}]
<<bob>> [{a,1}, {b,2}] <<bob>>

<<bob>> Set

v

\4

s Member(X)
[{a,3}, {c, 1}]

<<bob>> e ot

{true, [{b,2}, {c, 1}]} c v
> lent
[{a, 3}, {b,3]]

<<bob>> [{a, 1}, {b,2}]

(52] fc.1]

Removes

* Observed-Remove - context
 Requires _some kind_ of read

* cheap membership check

Sets In Riak

e Adds are removes!
e Action-at-a-distance!

* Clients are NOT replicas

Adds are removes

replica b

[{a, 1}, {b, 4}, {c,1}]

Add “Shelly”

Adds are removes

replica b

SRS Not concurrent -

{b, 5} Shelly Seen
{b,1} Bob

(b, 2} Phil

Shelly
1

{b, 3} Pete

{b, 4} John

Action-at-a-Distance

replica b

[{a, 1}, {b, 4}, {c, 1}

{3,1} (3y .
1y el _ Add “Shelly

{b, 1} Bob
{b, 2} Phil
{b, 3} Pete

{b, 4} John

Action-at-a-Distance

replica b
{a, 1}, {b, 4}, {c, 1} Are adds removes”?
@1 e Concurrent?
— Seen’”

{b, 1} Bob

{b, 2} Phil

{a, 1}

1C, 1}

{b, 3} Pete

{b, 4} John

Contexts & Consistency

e add X no ctx
* empty ctx - always concurrent (safe!)

* |ocal ctx - non-deterministic (could remove all,
some, none other X)

* depends on handling vnode's state

Contexts & Consistency

* add X + per element ctx

* only removes observed X regardless of handling
vhode

e mmmm, deterministic outcome

Blgset

e Adds are removes!
* [hey need a context

e Cheap is_member(X)

Elided Complications

e Hand-Oft
* 1-way Full state merge
* Without reading keys on receiving side!
* Event Set Maths
* Anti-Entropy
 Read Repair

 Multi-Data-Center

Bigset Handoft

e MUST read full set at sender

e Read full state at receiver?

 Would be bad

Bigset Handoft

e Sender sends keys
 Keys recelver hasn't seen - store
* Key receiver has seen - ignore

* Only read clock!

Bigset Handoft

 Sender doesn’'t send keys it has removed
* Key receiver never saw - merge clocks
* Just read clock!

* key receiver saw - add to set-tombstone

Set-Tombstone

* (Compact) Set of causal tags of removed keys

e Stored like on disk in a key

Bigset Handoft

* handoff receiver state
* On sender clock_key
* C=clock, T=bigset_clock:fresh()

* for each key received add dot to tracker

Bigset Handoft

 On end_key
e C-T=Removed Dots

e ToRemove = Receiver Clock intersected with
Removed Dots

e Recelver Tombstone + ToRemove

Compaction

» set-tombstone - logical clock/set of dots
* leveldb compaction

* |f dot < set-tombstone discard

* set-tombstone = set-tombstone - dot

* tell vnode after compaction “remove dots
dot()] from set-tombstone”

Next?

Production level code for Riak 2.x
Causal Consistency

More types - "Big"Maps

Tables of Maps or Sets

SQL over Eventual Consistency

summary

Eventual Consistency buys you low latency &
avallablility

Conflicts can be hard for application developers
CRDTs help
A little engineering goes a long way

 Decomposition brings complications too

