facebook

Parallel Functional Programming
at Scale, at Facebook

Simon Marlow
May 2015

o\

m. 2t * N m.,. ™ G WA DS W .-A.lu-.h..,v“...-l ‘..l A
ﬂ. S T AL A e

LSV SR ST RTINS IR T ST R St g vt Ragicy

BWi1 4302802430

AR

& wmmat Done I v St THERE w5 ¥ ws ramoar gy .

O, * ‘1.. " "’.L“
3 L= ! n
.. \."

——

Headlines

. Right now there are thousands of multicore machines running Haskell
24/7 at Facebook

. Haskell is a key part of the anti-abuse infrastructure
. Using a novel kind of implicit parallelism (the Haxl monad)

. This talk
The problem

Abuse detection & remediation
Why (and how) Haskell?

Applicative do-notation

Experience: tales from the trenches

Abuse detection & remediation

The problem

. There is spam and other types of abuse
Malware attacks, credential stealing

Sites that trick users into liking/sharing things or divulging
passwords

Fake accounts that spam people and pages
. Spammers can use automation and viral attacks
- Want to catch as much as possible in a completely automated way

. Squash attacks quickly and safely

The write pipeline

You can't post this because it has a blocked link. Yesl

The cortert you're trying to share includes a link that's been blocked for being spammy
or unzafe:

http:enopes comiimagesfitemplate/snopes gif \

Far more infarmation, visit the Help Center. If you think you're seeing this by mistake,

please et us know.

2 We call this system Sigma

Sigma:: Content -> Bool

Sigma classifies tens of billions of actions per day

Facebook + Instagram

Sigmaisarule engine
For each action type, evaluate a set of rules
Rules can block or take other action
Manual + machine learned rules

Rules can be updated live

Highly effective at eliminating spam, malware, malicious URLSs, etc. etc.

How do we define rules?

Example

. Fanatics are spamming their friends with posts about Functional
Programming!

. Let’s fix it!

Need info about
Exa’m ple the content
- We want arule that says

If the person is posting about Functional Programming

And they have »100 friends

Need to fetch the

And more than half of their friends like C++ , ,
friend list

Then block, else allow
Need info about

each friend

Our rule, in Haskell

fpSpammer :: Haxl Bool
fpSpammer =

- Haxl is a monad

. “Haxl Bool” is the type of a computation that may:
do data-fetching
consult input data
maybe throw exceptions

finally, return a Bool

Our rule, in Haskell

fpSpammer :: Haxl Bool
fpSpammer =
talkingAboutFP
where
talkingAboutFP =
strContains “Functional Programming” <$> postContent

postContent is part of the input (say)

postContent :: Haxl Text

Our rule, in Haskell

fpSpammer :: Haxl Bool
fpSpammer =
talkingAboutFP .&&
numFriends .> 100
where
talkingAboutFP =
strContains “Functional Programming” <$> postContent

(.&&) :: Haxl Bool -> Haxl Bool -> Haxl Bool
(.>) ::0rd a => Haxl a -> Haxl a -> Haxl Bool
numFriends :: Haxl Int

Our rule, in Haskell

fpSpammer :: Haxl Bool
fpSpammer =
talkingAboutFP .&&
numFriends .> 100 .&&
friendsLikeCPlusPlus
where
talkingAboutFP =
strContains “Functional Programming” <$> postContent

friendsLikeCPlusPlus = do
friends <- getFriends
cppFriends <- filterM likesCPlusPlus friends
return (length cppFriends »>= length friends "div™ 2)

Observations

. Our language is Haskell + libraries
Embedded Domain-Specific Language (EDSL)
Users can pick up a Haskell book and learn about it

Tradeoff: not exactly the syntax we might have chosen, but we get to
take advantage of existing tooling, documentation etc.

. Focus on expressing functionality concisely, avoid operational details

. “pure” semantics

no side effects - easy to reason about

scope for automatic optimisation

Efficiency

- Rules are data + computation
. Fetching remote data can be slow

. Latency is important!

We’re on the clock: the user is waiting

- So what about efficiency?

Fetching data efficiently
is all that matters.

1. Fetch only the data you need to make a decision

». Fetch data concurrently whenever possible

Let’s deal with (1) first.

Example

Fast
- We want arule that says
If the person is posting about Functional Programming
And they have »100 friends
Slow
And more than half of their friends like C++
Then block, else allow Very slow

- Avoid slow checks if fast checks already determine the answer

&&is short-cutting

fpSpammer :: Haxl Bool
fpSpammer =
talkingAboutFP .&&
numFriends .> 100 .&& (.&&)= 1iftA2 (&&)
friendsLikeCPlusPlus
where
talkingAboutFP =
strContains “Functional Programming” <$> postContent

friendsLikeCPlusPlus = do
friends <- getFriends
cppFriends <- filterM likesCPlusPlus friends
return (length cppFriends >= length friends " div 2)

Programmer is responsible for getting the order right

(tooling helps with this)

Concurrency

. Multiple independent data-fetch requests must be executed
concurrently and/or batched

- Traditional languages and frameworks make the programmer deal
with this

threads, futures/promises, async, callbacks, etc.
Hard to get right

Our users don’t care

Clutters the code

Hard to refactor later

Hax|’s advantage

. Because our language has no side effects, the framework can handle
concurrency automatically

- We can exploit concurrency as far as data dependencies allow

. The programmer doesn’t need to think about it

getFriends

friendsLikeCPlusPlus = do
friends <- getFriends
cppFriends <- filterM likesCPlusPlus friends . L
li |
I I

likesCPlusPlus

numCommonFriends a b = do
fa <- friendsOf a
fb <- friendsOf b

return (length (intersect fa fb))

friendsOf a

friendsOf b

length (intersect ...)

How does Haxl work?

Step 1

- Haxl is a Monad

. The implementation of (>>=) will allow the computation to block,
waiting for data.

This is the

DC resultofa Blocked indicates that the

data Result a computation computation requires this
= Done a e data.

| Blocked (Seqg BlockedRequest) (Haxl a) Haxl may need

todolO
newtype Haxl a = Haxl { unHaxl :: IO (Result a) }

Monad instance

instance Monad Haxl where
return a = Haxl $ return (Done a)

Haxl m >>= k = Haxl $ do
r<-m
case r of
Done a -> unHax1l (k a)
Blocked br ¢ -> return (Blocked br (c >>= k))

If m blocks with continuation ¢, the
continuation for m»=kisc>»=k

So far we can only block on one data-fetch

Our example will block on the first friendsOf request:

numCommonFriends a b = do
fa <- friendsOf a blocks here
fb <- friendsOf b
return (length (intersect fa fb))

How do we allow the Monad to collect multiple data-fetches, so we
can execute them concurrently?

First, rewrite to use Applicative operators

numCommonFriends a b =
length <$> (intersect <$> friendsOf a <*> friendsOf b)

. Applicative is a weaker version of Monad

class Applicative f where
pure :: a -> f a
(<*>) ¢« f (a ->b) ->f a->fb

class Monad m where
return :: a -> m a
(>>=) ::ma->(a->mb) ->mb

- When we use Applicative, Haxl can collect multiple data fetches and
execute them concurrently.

Applicative instance

instance Applicative Haxl where
pure = return

Haxl f <*> Haxl x = Haxl $ do

' <-f

X' <- X

case (f',x"') of
(Done g, Done y) -> return (Done (g vy))
(Done g, Blocked br ¢) -> return (Blocked br (g <$> c))
(Blocked br c, Done y) -> return (Blocked br (c <*> return y))

(Blocked brl c, Blocked br2 d) -> return (Blocked (brl <> br2) (c <*> d))

. <*> allows both arguments to block waiting for data

. <*> can be nested, letting us collect an arbitrary number of data
fetches to execute concurrently

Putting it together Here is where the actual

concurrency and/or batching
happens

. Given
fetch :: [BlockedRequest] -> IO ()

. We can run a Haxl computation

runHaxl :: Haxl a -> IO a
runHaxl (Haxl h) = do

r <- h

case r of

Done a -> return a
Blocked br cont -> do
fetch (toList br)

runHaxl cont

Example

(intersect <$> friendsOf x) <*> friendsOf y

(friendsOf x >>= return . intersect) <*> friendsOf y

(Blocked [FriendsOf x] (get (FriendsOf x)) >>= return . intersect)

<*> friendenOf v
(<$>) = fmap

fman £ m — m \\N— rotiinn £

(B friendsOf :: UserId -> Haxl [UserId]
friendsOf x =
= Haxl (return (Blocked [FriendsOf x] (get (FriendsOf x))
(Blocked [FriendsOf x] (get (FriendsOf x) >>= return . intersect))
<*> Blocked [FriendsOf y] (get (FriendsOf y))
Blocked [FriendsOf x, FriendsOf y]
((get (FriendsOf x) >>= return . intersect) <*> get (FriendsOf y))

Round 1

Round 2

(Some) Concurrency for free

. Applicative is a standard class in Haskell
. Lots of library functions are already defined using it

- These work concurrently when used with Haxl

. e.g.
sequence :: Monad m => [m a] -> m [a]
mapM :: Monad m => (a -> b) ->m [a] -> m [b]
filterM :: Monad m => (a -> m Bool) -> [a] -> m [a]

friendsLikeCPlusPlus = do
friends <- getFriends
cppFriends <- filterM likesCPlusPlus friends

Haxl is a general solution

. ...to the problem of scheduling 1/0

. it’s useful anywhere that needs to do I/0 and doesn’t want to express
concurrency explicitly.

. Other examples:
a blog engine

a build system

Is this implicit parallelism?

Granularity

. Tradeoff between granularity and parallelism
Lots of fine-grained parallelism, but difficult to exploit

hard to distinguish between fine and coarse automatically

- So we’re usually happy with either
simple annotations
automatic parallelism over restricted domains (vectorisation)

explicit dataflow (par Monad)

Feedback Directed Implicit Parallelism

Tim Harris
Microsoft Research, Cambndge, UK
tharris@microsoft.com

Abstract

In this paper we present an automated way of using spare CPU re-
sources within a shared memory multi-processor or multi-core ma-
chine. Our approach 1s (7) to profile the execution of a program, (i7)
from this to identify pieces of work which are promising sources
of parallelism, (7ff) recompile the program with this work being
performed speculatively via a work-stealing system and then (iv)
to detect at run-time any attempt to perform operations that would
reveal the presence of speculation.

We assess the practicality of the approach through an imple-
mentation based on GHC 6.6 along with a limit study based on
the execution profiles we gathered. We support the full Concur-
rent Haskell language compiled with traditional optimizations and
including I'O operations and synchronization as well as pure com-
putation. We use 20 of the larger programs from the “nofib” bench-
mark suite. The limit study shows that programs vary a lot in the
parallelism we can identify: some have none, 16 have a potential
2x speed-up, 4 have 32x_In practice, on a 4-core processor, we get
10-80% speed-ups on 7 orograms. This 1z mainlv achieved at the

Satnam Singh

Microsoft Research, Cambnidge, UK
satnams@microsoft.com

We work with programs written in Haskell (Pevton Jones et al.
1996), a pure, lazy, functional language which supports monadic
I'O. In principle this language is a great fit for multi-core hardware:
purity means that the compiler or run-time system can evaluate
multiple parts of a program in parallel without needing to worry
about data races. In practice we encounter five problems:

¢ Programs vary in the amount of parallelism that 1s actually
available. As we show, some have a lot but some have very little.

e Even in programs with abundant parallelism, the work must
be at a sufficiently coarse granularity that the parallel speed
up compensates for the overheads introduced in managing the
work.

e In languages with lazy evaluation, it 15 not immediately clear
which pieces of computation will actually contribute to the
‘real” work of the program. Performing un-needed work can
harm performance — for example it can allocate a lot of memory
and trigger extra garbage collections.

Remote data-fetching changes the equation

. Parallelism between data-fetches is all exploitable, because it’s coarse-
grained

- So we can make it as implicit as we like

. (we have to wave hands slightly about data-fetching not being strictly
pure)

How implicit is Haxl?

- We had to use <*> to get parallelism:

blog :: Haxl Html
blog = renderPage <$> leftPane <*> mainPane

- When we use »=(or the “do” syntactic sugar) we get sequential
execution

getAllPostsInfo :: Haxl [PostInfo]
getAllPostsInfo = do

ids <- getPostIds

mapM getPostInfo ids

Haxl is semi-implicit

. You can control parallelism using Applicative vs. Monad constructs

- However, these are part of the computational fabric

we normally use Applicative and Monad interchangeably when both
are available

For Haxl we want Applicative to be used “when possible”

e.g. mapM (= traverse), filterMm, etc.

. Defaulting things to Applicative when possible is a kind of implicit
parallelism.

. There’s a ubiquitous way we can do this...

Back to our earlier example

- These behave the same:

numCommonFriends a b = do

fa <- friendsOf a This is the
fb <- friendsOf b version we
return (length (intersect fa fb)) Want to write

numCommonFriends a b =
length <$> (intersect <$> friendsOf a <*> friendsOf b)

This is the
version we
want to run

. Data dependencies tell us we can translate one into the other

Translating do-syntax to Applicative

numCommonFriends = do
fx <- friendsOf x
fy <- friendsOf y
return (length (intersect fx fy))

automatically

numCommonFriends =
length <$> (intersect <$> friendsOf x <*> friendsOf y)

In submission

Desugaring Haskell’s do-notation Into Applicative Operations

Simon Marlow

Facebook
smarlow®@fb.com

Simon Peyton Jones

Microsoft Research
simonpj@microsoft.com

Abstract

Monads have taken the world by storm, and are supported by do-
notation (at least in Haskell). Programmers are increasingly waking
up to the usefulness and ubiquity of Applicatives, but they have
so far been hampered by the absence of supporting notation. In
this paper we show how to re-use the very same deo-notation to
work for Applicatives as well, providing efficiency benefits for
some types that are both Monad and Applicative, and syntactic
convenience for those that are merely Applicative. The result is
fully implemented in GHC, and is in use at Facebook to make it
easy to write highly-parallel queries in a distributed system.

1. Introduction

Consider this Haskell function that calculates the number of com-
mon friends between two Facebook users:

numCommonFriends Id + Id + Haxl Int
numCommonFriends x y = do

fx + friendsOf x

fy + friends0Of y

return (length (intersect fx fy))

Here friendsOf is an operation that makes a remote query to
a database to fetch the list of friends of a user. Desugaring the
monadic de expression according to the Haskell standard

Edward Kmetft

McGraw Hill Financial
ekmett@mbhfi.com

Andrey Mokhov
Newcastle University
andrey.mokhov@ncl.ac.uk

a Monad lies an Applicative [[13]. To be concrete, we can rewrite
nunCommonFriends using Applicative combinators like this:

numCommonFriends Id + Id + Haxl Int
numCommonFriends x y =
(Afx fy + length (intersect fx fy))
<$> friendsOf x
<*> friendsOf y

The combinators <$> and <*> are defined in Figure[I] but for now
we simply note that the two calls to friends0f are now manifestly
independent of one another. And indeed the implementation of the
Haxl nlonacﬂ can take advantage of that independence to perform
the two friends0f queries in parallel: in fact it collects them
together and batches them into a single query.

But there is still a problem; programmers should not have to spot
where they can use <*> to gain its advantages, because they are
likely to miss some opportunities, especially when code is refac-
tored. Moreover there are maintainability and comprehensibility
benefits in using a single universal notation, namely do notation.
In this paper we show how to have our cake and eat it too: the
programmer writes do notation, and the compiler desugars it au-
tomatically into the efficient paralle]l code that uses Applicative
combinators. We make these contributions:

¢ Rather than desugaring de notation uniformly into Monad com-
binators, we show how to take advantage of the program’s de-

nandanc ctemctien fo ealastiialis en AeeT 3 et 5 rrn cnrmbhinn

Why is this useful?

- We don’t have to represent parallelism explicitly with <*>
. Just write a sequence of statements

. Compiler analyses the dependencies and extracts the maximum
parallelism by transforming the sequence using <*> where possible

- We don’t have to think about dependencies

- We cannot miss any opportunities accidentally

Start with a simple example

do x1 <- A
X2 <- B
return (x1,x2)
Standard
Haskell ApplicativeDo
desugaring
A >>= \x1 -> equivalent ~ (,) <$> A <*> B

B >>= \x2 ->

return (x1,x2) f <$> ma = ma >>= \a ->

return (f a)

mf <*> ma = mf >>= \f ->
ma >>= \a ->
return (f a)

Dependencies prevent <*>

do x1 <- A
X2 <- B[x1]
return (x1,x2)

- Now we cannot use <*>, because B depends on x1

. This is the essence of the difference between Applicative and Monad:

(<*>) :: Applicative f

>f (a ->b) -> f a -> f b
(>>=) :: Monad f > f a

->(a ->fb) ->fb

. So we want to use Applicative when possible but Monad when
necessary.

Mixing it up
- What about

do x1 <- A
X2 <- B
X3 <- C[x1]
x4 <- D[x2]
return (x3,x4)

do x1 <- A

X2 <- B
X3 <- C[x1]
x4 <- D[x2]

return (x3,x4)

ApplicativeDo

((,) <$> A <*> B) >>= \(x1,x2) ->
(,) <$> C[x1] <*> D[x2]

But is that the best translation?

(A|B); (C| D)

/\/

- But we only have dependencies A->C and B->D, so why not

A » (C

\

(A;C)|(B;D)

Evaluating cost

.- Take a simple parallel cost model

— (11 m aX”

“I”

,’ K,

7 = +

- e.g.takeA=2,B=1,C=1,D=2
(A|B);(C|D) cost: 4
(A;C)|(B; D) cost: 3

Alternative translations

. ,) <$> A <*> B) >>= \(x1,x2) ->
(A|B);(C|D) 8 P AT ahay U

. . , $> (A >>= \x1 -> C[x1
(A;C)|(B; D) SR 4G SN oo &

But...

do x1 <- A
X2 <- B
X3 <- C[x1]
x4 <- D[x2]
return (x3,x4)

'

(,) <$> (A >>= \x1 -> C[x1])
<*> (B >»>= \x2 -> D[x2])

. Thisis not semantically equivalent to the original

. Effects would take place in the order A,C,B,D

But do we really care about ordering?

- Hax| doesn’t - or at least, there are no effects to observe

- But we do want exceptions to be deterministic:

do x1 <- A
X2 <- B
X3 <- C[x1]
x4 <- D[x2]
return (x3,x4)

. If Band C throw exceptions, | always want B’s exception.

. Reordering to A,C,B,D would break this.

Preserving equivalence is good

. It means ApplicativeDo works with any Monad/Applicative that
satisfies the laws.

. If we reordered things, it would only work on commutative Monads.

What does optimal mean?

do x <- A
z <- C[x]
return (y + z) _/
. Choices:
A=0, B=2, C=1 A=1, B=2, C=0
(A|B); C

A;(B]|C)

- We don’t know the costs at compile time.
- Therefore, be conservative.

. Our goal:

Choose a translation that is
optimal when all statements
have equal cost.

. (there may be multiple valid solutions)

Refinement: use “join”
do x1 <- A
X2 <- B
X3 <- C[x1]
x4 <- D[x2]

return (x3,x4)
ApplicativeDo
((,) <$> A <*> B) >>= \(x1,x2) ->
(,) <$> C[x1] <*> D[x2]

. Better: join :: Monad m => m (m a) -> m a
join m = m >>= 1id

join ((\x1 x2 -> (,) C[x1] <*> D[x2]) <$> A <*> B)

Algorithm sketch

- Two stages:
do x1 <- A

X2 <- B[x1]

X3 <- C

return (x2,x3)
rearrangement

{ x1 <- A; x2 <- B[x1] } | { x3 <-C}

desugaring

(\x2 x3 -> (x2,x3))
<$> (A >>= \x1 -> B[x1])
<*k> C

Rearrangement

- Start with alist of statements (={ s, ; ... ; s, }

(Lo L)

. Introduce “parallel blocks” S
- Meaning: just flatten the list

. A parallel block will turn into an applicative expression

do x1 <- A
X2 <- B[x1]
x3 <- C
return (x2,x3)

rearrangement

{ x1 <- A; x2 <- B[x1] } | { x3 <- C }

Where do we introduce parallel blocks?

. Take the sequence without the final do x1 <- A
return X2 <- B[x1]
x3 <- C

. (desugaring will put it back later)

. Split the sequence into segments do x1 <- A >
X2 <- B[x1]
- Place a segment boundary between Y3 T

two statements when there are no
dependencies that cross the boundary

- Make a parallel block from the rearrange { x1 <- A; x2 <- B[x1] }
segments; apply recursively | rearrange { x3 <- C }

What if there are no segments?

. If it’s a single statement: we’re done rearrange { x3 <- C }
= { x3 <- C }

- Otherwise we need a “;” somewhere

- In this case we have no choice: rearrange { x1 <- A; x2 <- B[x1] }
= { x1 <- A; x2 <- B[x1] }

- (we’ll do a more complex example
shortly)

. Result of rearrangement:

{ x1 <- A; x2 <- B[x1] } | { x3 <- C }

Next, desugar to get an expression

desugar ({ x1 <- A; x2 <- B[x1] } | { x3 <- C }) (x2,x3)

The expression
from “return”

. desugaring a parallel block yields an Applicative expression:

(\x2 x3 -> (x2,x3))
<$> desugar { x1 <- A; x2 <- B[x1] } x2
<*> desugar { x3 <- C } x3

(\x2 x3 -> (x2,x3))
<$> desugar { x1 <- A; x2 <- B[x1] } x2
<*> desugar { x3 <- C } x3

. First, deal with this:

desugar { x3 <- C } x3

C
- Next:

desugar { x1 <- A; x2 <- B[x1] } x2

A >>= \x1 -> desugar { x2 <- B[x1] } x2

A >>= \x1 -> B[x1]

Result

do x1 <- A
X2 <- B[x1]
x3 <- C
return (x2,x3)

(\x2 x3 -> (x2,x3))
<$> (A >>= \x1 -> B[x1])
<*k> C

A more complex example

x1 <- A
X2 <- B[x1]
x3 <- C
gx4 <- D[x3]
X5 <- E[x1,x4]

return (x2,x4,x5)

- Rearrange:
There are no segments
We have to insert “;” somewhere

And end up with the optimal result

Finding the optimal result

. Just evaluate all possibilities:
Startingwith { s, ; ... ; s, }
Foreachiin 2..n, compute
rearrange { S; ; ... 5 Si{ } ; rearrange { S; ; ... ; S, }
Evaluate with parallel cost model, with “|” = “max” and “;” = “+”
Every statement costs 1

Pick the cheapest!

B R Y v A — A ; (B|{C;D;E}) (cost 4)
x3 <- C
gx4 <- D[x3]
X5 <- E[x1,x4]

return (x2,x4,x5)

S%3 < TC T
gx4 <- D[x3]
X5 <- E[x1,x4]

return (x2,x4,x5)

X3 <o G
gx4 <- D[x3]
X5 E[x1,x4]

return (x2,x4,x5)

({A;B}|C) ; D;E

(cost 4)

g'i's""""é':'ﬁ'; 7y

return (xz,x4,x5)

({A;B}|{C;D}) ; E

We have a winner!

(cost 3)

. After desugaring:

join (\(x1,x2) x4 ->
E[x1,x4] >>= \x5 -> pure (x2,x4,x5))
<$> (A >>= \x1 -> B[x1] »>>= \x2 -> return (x1,x2))
<*¥> (C >>= \x3 -> D[x3])

- Exhaustive search is O(n3)

. The “segments” part of the algorithm cuts down the search space
(in the paper we have a proof that it doesn’t affect optimality)

- There are other tricks to cut down the search space

. ... butin practice we use a heuristic instead of the full O(n3) search

heuristic is worse in 1.4% of cases

. Full details in the paper, “Translating Haskell’s do-notation into
Applicative operations” (under submission)

Results

. This transform is being used across our codebase at Facebook
. Users typically don’t worry about concurrency

- There are a few pitfalls:
explicit use of »»=

“shortcut” functions that take Haxl computations as arguments can
break things

we want all the Haxl computations visible in the same do-block

Haxl project: experience

The Haxl project

. We had an existing system and home-grown DSL, called FXL, and lots
of code written in it

. Started April 2013

- By July 2015 we had deleted all the FXL code and replaced it with
Haskell, and trained our engineers to use Haskell.

1. Existing source code

.- hundreds of thousands of lines of existing FXL code
- Impractical and error-prone to translate code by hand

- Wrote a tool to do the migration

Automatic translation
FXL Code — Haskell Code

. Source code still FXL (during the migration), run the tool each time the
code changes.

2. Migrating running code to Haskell

2. Migrating running code to Haskell

. hundreds of different requests (one for each write action)

- had to ensure that each one:
performed well enough

gave exactly the same answers

(otherwise we introduce false positives/negatives)

. As each request type is ready, we want to switch it over to running on
Haskell in production

fxlsh> Round(0.5)
1

haxlsh> round 0.5
7

At scale, the edge cases happen all the time

. Invalid Unicode
. Invalid arguments to primitives & library functions
. Exception behaviour, values of exceptions
. Is“NaN” avalid number in JSON? What about “infinity”?
. Floating-point:
round 0.5

printing floating-point values
. divide-by-zero throws in FXL
. semantics of \s in regex with Unicode

- etc. etc.

3. Migrating the users

. Dozens of FXL users in multiple
geographical locations

- Wrote a lot of teaching material
. Ran multi-day hands-on workshops

. Created internal Facebook group for
questions (“Haxl Therapy”)

. Hax| team helped with code reviews

How did users cope with the switch?

. Still committing happily
. Some struggles with do-notation vs. fmap, <$>, =«
“How do | convert a Haxl t to t?”

. Users started embracing the new features

Started building abstractions, adding types, creating tests

- Unblocks some large-scale rewrites and redesigns of subsystems

Does it work?

~ S~

\ /
- - [-
& /’é/
N

. Is it stable enough?

- Is performance good enough?

- Did we have to hack the compiler?

- What about build systems, packages, cabal hell, etc. etc.

- How do we do live updates?

Thrift

Thrift

Found one bugin the GHC garbage collector

There was a multi-year-old bug in the GC that caused our machines to
crash every few hours under constant load.

sssssss

Rolled out new release with GC fix

Thic ic theon] el e found

(we found one more that only affected shutdown)

Stability

. The Haskell code just doesn’t crash. (*)

which is good, because diagnosing a crash in Haskell is Very Hard

. (*) except for FFI code

One FFl-related memory bug was particularly hard to find

Performance

RELATIVE PERFORMANCE

Performance

3.5

225,

N

1.

(9a]

=

0.

(9a]

(@)

Hax| performance vs. FXL

FXL mHaxl

Overall: 30% better
throughput for
typical workload

al 2 3 4 5 6 7 8 9 10 11

12 13 14
REQUEST TYPE

15 16 17 18 19 20 21 22

23 24 25

Good monitoring is essential

. Noisy environment:
multiple sources of changes
dependencies on other services
trafficisn’t constant
spam/malware attacks are bursty

- Hooked up GHC’s garbage collector stats APl to Facebook’s monitoring
infrastructure

Resource limits

. Server resources are finite, and we have latency bounds

. Our job is to keep the system responsive, so we cannot allow
individual requests to hog resources

. Fact of life: individual requests will sometimes hog resources if
allowed to

Usually: doing some innocuous operation on untypically large data

e.g. regex engines sometimes go out to lunch

Allocation limits

- So we implemented allocation limits in GHC

setAllocationCounter
getAllocationCounter

enableAllocationLimit
disableAllocationLimit ::

. Counter is per-thread, ticks down with memory allocation
. Triggers an exception when the counter reaches zero

. Easy in Haskell, very difficult in C++

How important are allocation limits?

Live memory per cluster (max)

one heavyweight request was enabled
yWwelg g allocation limits enabled

(PRLRTHEN R ' I i | i | | | | |
" | [‘ |‘;‘ ‘M (i, | »I‘l | | ’ ’ !
fjj |] |f"]; l ‘ ‘1 \“51 " il :| ‘: I il ‘rill‘ ‘ Jl‘ j‘:
| AR ‘ ’|',"|‘ LA AL 30 g Il | {ini e
| ‘[\(F.' Ml { i Il I R i I | ‘l|1
AT ARl 1 ‘l L e TR A
r } lJ '{ LI ‘ | | “! , i ‘q ‘}":;’ A | 'I I ‘
‘I | "‘I f ' \ [| }| ‘ f ‘ \.’. | ' { | ll .~ | ,l“’ [\
| | | S L

GCvs. latency

- GHC has a stop-the-world parallel collector

.23495s 0.235s 0.23505s 0.2351s 0.23515s 0.2352s

Activity

HEC D

HEC 1

HEC 2

HEC 3

. obviously to meet our latency goals we cannot GC for too long

GCvs. latency

. So how do we manage this?

- Fixed number of worker threads + allocation limits

effectively puts a bound on the amount of work we are doing at any
given time

. Very little persistent state (a few MB).

. A handful of GCimprovements, all upstreamed

Hot-swapping code

Fast deployment

. The faster we can get new rules into production, the more spam we
catch before people see it, the faster we stop viral malware, etc.

. (Not all changes need immediate deployment: code review is the norm)

- “Code in therepois whatis running in production”

- Deployment typically on the order of a few minutes

How can we deploy new code?

. Haskell has an optimising compiler, runs native code

. Haskell code needs to be compiled and distributed to servers

. Servers need to start running the new code somehow

Restarting the process doesn’t work

. Takes a while to start up
. Caches would be cold

. Arolling restart would take too long

Live updates

Live Updates

. Main idea
load the new code directly into the running process
needs a dynamic linker
Start taking requests using the new code

When all requests running on the old code have finished, remove it
from the process

- GHC’s runtime has a built-in linker

. We added support for unloading objects with GC integration

facebook

Questions?

The Haxl Team, past and present

Jonathan Coens
Bartosz Nitka
Aaron Roth
Kubo Kovac
Katie Ots

Jon Purdy

Zejun Wu

Jake Lengyel
Andrew Farmer
Louis Brandy
Noam Zilberstein
Simon Marlow

