Erlang. . « . Er

Scalable

P g i
paam bz

Where Did the Slave Node Go?

" ERTS as source code: ERTS as components:
What |5 ERTS? See: [OTR) erts! :

ERTS as memaory areas
U P o

= bk

The BEAM interpreter —

ENTS 44 thee Brizeg ektime SRR o 2 k:
emulatar! Processes Gimit | [
DAY The Sehed - 2

iy he Scheduler
hipe/ (2 HiPE - —
e The Garbage Collectar |
T -

The Erlang Run-Time
System: ERTS

- A : by :
" ,r «

a2’ AT, oy 5

e ; -'s;-\o"

Erl

Fault Tolerant

BB WV 0%
e

The right concurrency model.
Error & exception handling done right
Good libraries for the hard stuff

2 ¥ 5 -
—_ - ’ s
N O A
t - wy 14 \
.-a “‘! “ " , . '.. -
- » - - i ’ ps
*'1 ~ .---T: a3 . . B : ¥
» a : BT : 3 . . ?-- <t
e & W = _
- E . s .
?J _:“- i 1 v -4 :
e é -~ 45
" [. - T 4]
i ’." oo’ ;e . ! i
4 i ﬁ-:’ “vg . .,.
| 3 R
ﬂ\-b—
- "."!.'" q
v .*ﬁ'"‘tr
e - ' .‘,‘;‘
o ' Ot
h 2 e
e i . A R

Maintainable

Dynamically typed.
Symbolic and transparent data structures
An interactive shell

- -

2
-J_r"-

< 4
2 4D

'?&! --_ 2 =

.t ._.‘!J‘ [%

e | :
A o ‘ 1 ’
- 2 J\fv - .F

i f el
| W

v < o
. W

Scalable

The right concurrency model.
Good libraries for the hard stuff
Weird but efficient strings for I/0

The right concurrency
model

-

Lightweight processes j==
Message passing
Share nothing semantics
Don't stop the world GC

Monitors & Signals e

M e e ED

Dynamically &
Strongly

Typ
Symbolic and transparent data structures

The right concurrency
model

Lightweight processes
Message passing

Share nothing semantics
Don't stop the world GC

Monitors & Signals

Supervisor

Supervisar Supervisar

lllll

Error & exception handling done right

get_file(FN) ->
try file:open(FN) of

{ok, FileH} -> .
try read(FileH) of Su pe rVISor
{ok, File} -> File
catch
error:eof -> []
after
file:close(FileH)
end
end.
CI‘IIld CI’IiId
Supervisor Supervisor

Child Child Child Child

Dynamically &
Strongly
Typed

Symbolic and transparent data structure

Enables:

Hot code loading
Movable heaps & stacks
Transparency of data
Garbage Collection

Erlang type lattice: any ()

NS

number () atom() reference() fun() port() pid() tuple() map() 1lst{) binary()

/

nll() cons()
integer() float()

noe()

All values are tagged, some are boxed.

Stack The String "Hello*

What is ERTS?

ERTS is the Erlang Runtime System.

SIMPLICITY

IT'S FOR SIMPLETONS

llllll

ERTS as components:

The BEAM interpreter

The Scheduler
EE == = .

"""" HIPE
The Garbage CoIIector 1/0

[—

Processes

Conceptually: 4 memory areas and a pointer:

A Stack

A Heap

A Mailbox

A Process Control Block
A PID

. ERTS as memory areas:

Processes BEAM
CODE

ERT
CODE C-stack

P —ais

- .
P2 EE— — pzl(_)=-?Hello",
Scheduler B 1oL L ’
BEAM Queues a— 31T
Sockets = .
etc...

Binaries P99 —

PCB

Process
Control

Block Stack

Native
l Stack
Hea

MQ P
Message
Queue

See: [OTP]/erts/emulator/beam/er|_process.h

htop
stop
heap
hend
P
fcalls
reds
status
next
prev
prio
id
flags

Process
Control
Block

=Nl w GAJ 1111 IEN

ERTS Proce
CODE C-stack

Pl —
GC
Scheduler 5

BEAM ueues
P3 —

Sockets >
etc...

P2 —

eeeeeeeeeeee

=, Binaries P99 —

The Tag Scheme

HEADER (see below)

dadaaaaaaaaaaaaaaaaaaaaaaaattttoo

PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPOL
PPPPPPPPPPPPPPPPPPPPPPPPPPPPPP1O

nnnnnnnnnnnnnnnnnnnnnnnnnnnn

ddaaaaaaaaaaaaaaaaaaaaaaaabnoeoo
VVVVVVVVVVVVVVVVVVVVVVVVVVE00100
VVVVVVVVVVVVVVVVVVVVVVVVVVO01x00
VVVVVVVVVVVVVVVVVVVVVVVVYVVE10000
VVVVVVVVVVVVVVVVVVVVVVVVVVO10100
VVVVVVVVVVVVVVVVVVVVVVVVVV011000
VVVVVVVVVVVVVVVVVVVVVVVVVVEO11100
VVVVVVVVVVVVVVVVVVVVVVVVVV100000
VVVVVVVVVVVVVVVVVVVVVVVVVV100100
VVVVVVVVVVVVVVVVVVVVVVVVYVV101000
VVVVVVVVVVVVVVVVVVVVVVVVVV101100
VVVVVVVVVVVVVVVVVVVVVVVVVV110000
VVVVVVVVVVVVVVVVVVVVVVVVVV110100
VVVVVVVVVVVVVVVVVVVVVVVVVV111000
VVVVVVVVVVVVVVVVVVVVVVVVVV111100

CONS

BOXED (pointer to header)

PID
PORT
ATOM
CATCH

NIL (i always zero...)

SMALL INT
ARITYVAL

BINARY AGGREGATE

Tuple

BIGNUM with sign bit

REF

FUN

FLONUM

EXPOR
REFC_BINARY
HEAP BINARY
SUB BINARY
Not used
EXTERNAL PID

EXTERNAL PORT | EXTERNAL THINGS

EXTERNAL REF
Not used

| BINARIES

THINGS

An example
The string "Hello", i.e. the list
[104, 101, 108, 108, 111]

htap
stop
hwap
hend
®

fealls

i

Mags
et
prey

PCB

Process
Control
Block

ADR BINARY VALUE + DESCRIPTION

hend -> L T T T T

stop -=

htop ->

0006E
11111111 11111111 11

128

(1)
NIL

+ list tag

+ list tag
104 bsl 4 +
+ list tag
101 bsl 4 +
+ list tag
108 bsl 4 +
+ list tag
108 bsl 4 +

111 bsl 4 +

small

small

small

small

cee== | =2

->

hend

stop ->

htop ->

ADR

132
128
124
120
116
112
108
104
100

96

100000000
|

00000000 COOCO0E0 10000001 |

BINARY

|
100000000

| 00000000
| 00000000
| 00000000
| 00000000
| 00000000
| 00000000
| 00000000
|11111111
| 00000000

ofeefe]elolele)
00000000
00000000
000000
00000000
0EOOOOO0O
ofeefelelolee)
00000000
11111111
00000000

00000000
00000110
00000000
00000110
00000000
00000110
00000000
00000110
11111111
00000110

|
01111001|

10001111 |
01110001 |
01011111|
01110001 |
11001111
01110001 |
11001111 |
11111011 |
11111111

VALUE

128

120
(H)
112
(e)
112
(L)

96
(L)
NIL
(o)

+ list tag

+ list tag
104 bsl 4 +
+ list tag
101 bsl 4 +
+ list tag
108 bsl 4 +
+ list tag
108 bsl 4 +

111 bsl 4 +

+ DESCRIPTION

small

small

. ERTS as memory areas:

Processes BEAM
CODE

ERT
CODE C-stack

P —ais

- .
P2 EE— — pzl(_)=-?Hello",
Scheduler B 1oL L ’
BEAM Queues a— 31T
Sockets = .
etc...

Binaries P99 —

llllll

ERTS as components:

The BEAM interpreter

The Scheduler
EE == = .

"""" HIPE
The Garbage CoIIector 1/0

[—

BEAM

- Garbage Collecting-

- Reduction Counting-

- Non-preemptive-

» Directly Threaded-

- Register-

- Virtual-
-Machine

Memory Management:

Garbage Collection

- On the Beam level the code is responsible for:
- checking for stack and heap overrun.
- allocating enough space

- "test_heap" will check that there is free heap space.

- If needed the instruction will call the GC.

- The GC might call lower levels of the memory subsystem
to allocate or free memory as needed.

Scheduling:

Non-preemptive, Reduction counting

- Each function call is counted as a reduction

- Beam does a test at function entry: if (reds < 0) yield
- A reduction should be a small work item

- Loops are actually recursions, burning reductions

A process can also yield in a receive.

Dispatch: Directly Threaded Code

The dispatcher finds the next
instruction to execute.

I Ox1000 #define Arg(N) (Eterm *) I[(N)+1]
) #define Goto(Rel) goto *((void *)Rel)

beam_emu.c **:

External beam format: Loaded code*: OpCase(move_xx). {
0x1000: 0X3000 ==Jp 0x3000: X(Arg(1) = X(Arg(O)):
{move{x,0}{x,1}}. —3p.d 0x1004: 0x0 o
{move,{y,0},{x,0}}. 0x1008: 0X1 } S
{move,{x,1},{y,0}}. 0x100c: 0x3200\‘ OpCase(move.yx): {
Ox1010: Ox1 0x3200: x(Arg(1)) = y(Arg(0));
0x1014: 0x1 .
0x1018: 0x3100 }
[:'n e e OX101 c: Ox1 \ OpCase(move_xy): {
Ox1020: 0x1 0x3100: y(Arg(1)) = x(Arg(0));
| +=3;
Goto(*I);

}

BEAM

- Garbage Collecting-

- Reduction Counting-

- Non-preemptive-

» Directly Threaded-

- Register-

- Virtual-
-Machine

Serving a Few

Serving Many

Where Did the Slave Node Go?

wt]
e
-
2
=
o

Last Live Scheduler
Tries term_to_binary

¢ - - :
- o - i of s | .
(p v . 4 - "«
- " K ..-\
. (' . '

(R TR Beam Instructions

BEAM

+ Garbage Collecting-

+ Reduction Counting-

+ Non-preemptive-

+ Directly Threaded- =

+ Reglster- -

- Virtual- .
-Machine

An wided Exanple

o[, ey

BEAM i5 @ register machine,
It hes two sets of registers: ¥ou can look at heam code by giving
¥ ang y the 'S* flag to the compiler:
% registers are caller save
and arguments.
¥ registers are callee save
and actually the stack

cltest, ['S']}

See: [OTP]lertsfemidatarbeamshaam emiic

The Scheduler

e Process State

Reduction count problems Load Balancing

Reductions BIFs uses an arbitrary amount of

= Lukizs: "It is quice shorr and nat hard ta undarstand o you know reductions

Que Handling e schedule() - e
Timing wheels

erl_process.c schedule()

= are cakiulaced wihen a
] recuciions,

Processes will normally are rowards lower schedulers ir

rocess_main(l
B - 1. Update reduction counters thare is no ovarioad,
Errie

Possible Problems

f—

8 yat
all

Cneck triggered tmers

balance_reds = 4,000,000 check balance
4. Fasslbly migrate processes sports

duller wark (lead, free, trace, etc}

= 0000 check O, update tima
poets Far 2000 reds

7. Execute 112

A return does not use any reductions.

NIFs uses an arbitrary amount of
reductions.

Showkl

It & scheguler 5 overicaded procesesses are evicied o
ather schedulers.

17 reduction counting <sned Lip, SCAFVAiEn

might oogur

Lise: +5hu to wake up slesping schedulars

The Garbage Cc

One Scheduler Per Core

Cores Schedulers Running Ready Q

. B.... N Process State

[Reductions

schedule 1
runnable > r Un nln g GCing
Tr e o "

Timing wheels

|

The Process State Machine

Possible Problems

Priority Inversion

Should | be worried? No
Do | need to know about this? No
What can | do? Don't mess with priorities

running

Reductions reduced by:
- Function call
! . Bif call
- GC

Yield when:

0 Reductions left
bif trap
busy port Yield and sleep when

receive with no match

v

>

suspended exiting —» free

>
. N
schedule ru n n l n g

Reductions reduced by:

runnable GCing

M i wal [alow] Port Tas + Function call
i b . Bif call
yield \ . GC
Yield when:
0 Reductions left
bif trap
busy port Yield and sleep when

receive with no match

l receive
msg

waiting

Timing Wheel

timeout

The Process State Machine

runnable

Max High Normal [&low] Port Tasks

FirEst: First: First: &P1
Last: Last: Last: &P3

w
Pl next: &P2
P? next: &P3)

= ==
P3 next: NULL

Normal [&low]

First: &P1
Last: ~&P3

Pl next: &P2

P2 next: &P3

P3 next: NULL

>

suspended exiting —» free

>
. N
schedule ru n n l n g

Reductions reduced by:

runnable GCing

M i wal [alow] Port Tas + Function call
i b . Bif call
yield \ . GC
Yield when:
0 Reductions left
bif trap
busy port Yield and sleep when

receive with no match

l receive
msg

waiting

Timing Wheel

timeout

The Process State Machine

walting

Timing Wheel

.......

.....

Timing Wheel

Large Array (65536)
© 1 ... o

I R NG

ErlTimer: slot: 6
count: 1
prev: NULL

tiw:

prev:
next: NULL

. B.... N Process State

[Reductions

schedule 1
runnable > r Un nln g GCing
Tr e o "

Timing wheels

|

The Process State Machine

Possible Problems

Priority Inversion

Should | be worried? No
Do | need to know about this? No
What can | do? Don't mess with priorities

erl_process.c schedule()

Lukas: "It is quite short and not hard to understand if you know C".

560 lines

beam_emu.c SChEdU|€()

rocess_main :
P - () Update reduction counters

. Check triggered timers

If check balance reds > 4,000,000 check balance
Possibly migrate processes+ports

. Execute scheduller work (load, free, trace, etc)

. If function_calls > 4000 check 10, update time
Execute 1 to N ports for 2000 reds

(More or less stolen from Lukas presentation)

Execute process
till yield.
call schedule()

NouswN -

Load Balancing

Load balancing operations are calculated when a
scheduler has done 4,000,000 reductions.

Processes will normally migrate towards lower schedulers if
there is no overload.

If a scheduler is overloaded procesesses are evicted to
other schedulers.

If reduction counting is messed up, starvation
might occur.

Use: +sfwi to wake up sleeping schedulers.

Reduction count problems

BIFs uses an arbltrary amount of
red U C t 10 n S Should | be worried?

Do | need to know about this?
Whatcamldo Ficche B

A return does not use any reductions.

Should | be worried?
Do | need to know about this? e
What can | do? P

NIFs uses an arbitrary amount of
FEdUCtlonS . Should | be worried? Yes.

Do | need to know about this? Yes.

What can | do?
Don't use NIFs ;)
Make sure your NIFs are yielding and using reductions.
Wait for "dirtv schedulers”.

B0l Wil Ww rl t

n arbitrary am

Should | be worried?
Do | need to know about this?
What can | do? =y

es NotT use any

Reduction count problems

BIFs uses an arbltrary amount of
redUCtlonS Slouldlbewor ied?

eed to know abo tth
Whatcanldo

A return does not use any reductions.

Should | be worried?
Do | need to know about this? e
What can | do? et

NIFs uses an arbitrary amount of
I“Ed UC t l ons. Should | be worried? Yes,

Do | need to know about this? Yes.

What can | do?
Don't use NIFs ;)
Make sure your NIFs are yielding and using reductions.
Wait for "dirty schedulers”.

2S not use

Should | be worried? No
DO | need to know abOUt thIS? Probably not
What Can | dO? Use tail recursion,

don't have insanely long callchains.

I e W Wl w eI wd & R e L RIS
Do | need to know about this?

What can | do?

A return does not use any reductions

Should | be worried?
Do | need to know about this? Freswe
What can | do?

NIFs uses an arbitrary amount of
I"ed u C t lO n S . Should | be worried? Yes.

Do | need to know about this? Yes.

What can | do?
Don't use NIFs ;)
Make sure your NIFs are yielding and using reductions.
Wait for "dirty schedulers".

llllll

ERTS as components:

The BEAM interpreter

The Scheduler
EE == = .

"""" HIPE
The Garbage CoIIector 1/0

[—

possibly go
wrong?

S’ B N Wl

Copying Generational Garbage Collector

e TR Cuc

ek

e
e

aatimal e

2]

el

BTN

Copying Generational Garbage Collector

Advantages with 1 heap/process:

+ Free reclamation when a process dies
+ Small root set

+ Sort of "Incremental”
+ Improved cache locallity

+ Cheap stack/heap test

+ Smal extra footprint during GC
Disadvantages with 1 heap/process:

- Message passing Is expensive
- Uses more space (fragmentation)

Lessons learned:

-« ERTS - the Er‘lang RunTime System is
the defacto standard lmplementatlon
of Erlang B b 3L N

«Each pfbcess has |ts own, stack and
~)" heap: R Ao AR
.. +The Erlang VM BEAM e)tecutes the
- Erlang code P
° "« Pracess. schedulmg: Eonttoled by
*| reductionicount = -.‘~-:.- R .‘\- B
. &Cislocal to.a process P L "" R

‘11

£ Gc is generatjon\al and cbpymg * RN

Bright
Passiona

The right people 6¢t

te
1NgSs

th
done

Functional Concurrent

Single-assighment - Distributed
Dynamically typed - Message passing
No sharing
Automatic Memory Management (GC) Soft real-time

Fault tolerant

Open Source

%% File: hello.erl
-module(hello).
-export([run/0]).

run() -> io:format("Hello, World\n").

Functional Concurrent

Single-assighment - Distributed
Dynamically typed - Message passing
No sharing
Automatic Memory Management (GC) Soft real-time

Fault tolerant

Open Source

F1 = fun () -> 42 end.
42 = F1().

F2 =fun (X)-> X+ 1 end.

11 = F2(10).

F3=fun(X,Y)->
{X,Y, Z}
end.

F4 = fun ({foo, X}, A) ->
A + X*Y;
({bar, X}, A) ->
A - X*Y;
(L A)->
A
end.

F5 = fun f/3

F6 = fun mod:f/3

Functional Concurrent

Single-assighment - Distributed
Dynamically typed - Message passing
No sharing
Automatic Memory Management (GC) Soft real-time

Fault tolerant

Open Source

(foo@frodo)1> X=42.

42

(foo@frodo)2> X.

42

(foo@frodo)3> X=43.

** exception error: no match of right hand
side value 43

(foo@frodo)4>

Functional Concurrent

Single-assighment - Distributed
Dynamically typed - Message passing
No sharing
Automatic Memory Management (GC) Soft real-time

Fault tolerant

Open Source

(foo@frodo)4> F= fun(X,Y) -> X + Y end.
#Fun<erl|_eval.12.113037538>
(foo@frodo)5> F(1,2).
3
(foo@frodo)6> F(1.0, 2).
3.0
(foo@frodo)7> F("1", 2).
** exception error: bad argument in an arithmetic expression
iIn operator +/2
called as "1" + 2

Functional Concurrent

Single-assighment - Distributed
Dynamically typed - Message passing
No sharing
Automatic Memory Management (GC) Soft real-time

Fault tolerant

Open Source

%%% DEMO 1

%%% Show code
cd("C:/Users/happi").
S=demo:start_server().

W = demo:start_ worker(S).
W2 = demo:start_worker(S).
S ' {broadcast, hi}.

W ! terminate.

exit(W2, kill).

S ' {broadcast, hi}.

exit(s, kill).

S ' {broadcast, hi}.

mMnesia

Hof on DB
QLC

Hot code loading

Fault tolerant

Supervisor trees
Hof maplfo\d

Genserver
Atomslsymbolic programming

Easy to make fault-tolerant systems.

- Erlang was designed from the ground up with the
purpose of making it easy to develop fault-
tolerant systems.

- Erlang was developed by Ericsson with the
telecom market in mind.

- Erlang supports processes, distributed systems,
advanced exception handling, and signals.

- Erlang comes with OTP-libraries (Open Telecom
Platform), e.g. supervisors and generic servers.

Low maintenace easy upgrade

Hot code loading.
Distribution.
Interactive shell.
Simple module system.
No shared state.
Virtual machine.

Network programming is easy

Distributed Erlang solves many network programming needs.

Setting up a simple socket protocol is a breeze.

The binary- (and now bit-) syntax makes parsing binary protocols easy.
There are simple but powerful libraries for HTTP, XML, XML-RPC and SOAP.

Ability to leverage multi-core

The concept of processes is an integral
part of Erlang.

No shared memory -- easier to program.
The Erlang Virtual machine (BEAM) has
support for symmetric multiprocessing.

“Each year your
sequential programs will
go slower.

Each year your
concurrent programs will

o faster.”
9 fSts - Joe Armstrong

go faster.” __ joe Armstrong

Rapid development

- Automatic memory management.

- Symbolic constants (atoms).

- An interactive shell.

- Dynamic typing.

- Simple but powerful data types.

- Higher order functions and list comprehensions.
- Built in (distributed) database.

God way to get great programmers.

Lennart SPJ

Nice paradox: John
The lack of Erlang programmers makes it easier for us to
find great programmers.

Phil

There are many great C and Java programmers, I'm sure, but
they are hidden by hordes of mediocre programmers.

Programmers who know a functional programming
language are often passionate about programming.

™

Passionate programmers makes Great Programmers

