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The purpose of computing
is insight, not numbers.

R. Hamming, Numerical Methods
for Scientists and Engineers, 1962.
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Computational science m
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e Simulation/Sensors = {dataset} = Visualization/Analysis

e Characteristics
e volumetric (3D) time-varying data, or hyper-volumes

: -

e multifields: f:: M c R** — R J

e Example problems: st
® nuclear scission [LBL/FHPC14]: 66x40x40, 2 fields [x 40] e
e star formation [ICFP’08]: 250x250x600, 13 fields [x 200] —

THE FIRST CROSSING THE ASITTING
LIGHT BORDERS TARGE]

® hurricane Isabel simulation: 500x500x100, 13 fields [x 48]

e combustion: Landge et.al., SC14: - 2025x1600x400 [x ?]

* high-dimensional spaces: Gerber et.al. 700K samples in 10D
e HIV capsid: Zhao et.al. (UIUC) - 64M atoms

Zhao et.al., Nature, 497,2013

L e L Ll

e (Challenge - scale

NCSA Blue Waters
Cray XE/XK
10 Petaflops, 300K cores, $200M



Scientific datasets n
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e \What is a scientific dataset?

e (discrete) set of samples ...
® scalar data - pressure, temperature
e vector data - velocity, curl
¢ tensor data - diffusion

e .. at points in some continuous space d

e 3D
e 3D +time '”tel'a’cp);;':ted

* higher dimensions - e.g. in optimization Fp= f(Fa,Fo,Fo)

e Sample points may be b

e organised on a regular grid |
e irregularly spaced triangular zzﬁtangu "
(simplicial)
. cell
e But we also need to interpolate
e so we divide the dataset into topological cells ( )
e simplicial (triangles/tets) -> barycentric interpolant fa?i::igzmt
e square/rectangular -> bi/trilinear interpolant e field values

e other subdivisions and interpolants used 5




Implementation N
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e Parallel Run-Time Systems WUDUs: indexed collection, g \ ]
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The Uintah Framework:A Unified Heterogeneous
Task Scheduling and Runtime System: Meng, Humphry, Berzins,
Proc. Supercomputing, 2012



Visualization Examples

" Topologically Accurate Dual
'+ lIsosurfacing Using Ray
Intersection: Jaya

' Sreevalsan-Nair, Lars
Linsen, and Bernd Hamann

UNIVERSITY OF LEEDS

DTI Fiber Clustering in the Whole Brain,
S.Zhang & D. Laidlaw, Proc. |[EEE

Visualization 2004.

Generation of Accurate
Integral Surfaces in Time-
Dependent Vector Fields, C.
Garth, H. Krishnan, X.
Tricoche, T. Bobach, and K.I.
Joy



Challenges
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e Data scale:

e 10'? bytes (tera-scale), 10'° (peta-scale), 1078 (exa-scale)

e “discovery science”

e push for ever-greater spatial and temporal resolution

How long to eyeball

e Visualization limits: - 1 GB?
e 107 retinal cells, « 1 TB?
e 1 byte/cell (RGB), 300MB/s raw b/with - 1 EB?

e perception: effective bandwidth 10-100KB/s
e display: 4x10° pixels on a good single-screen display

e Geometric & topological analysis
e identify features
e guide/accelerate visualization 27 hI"S

e quantitative summary | |2 da)’S
J ltifield
MR 317000 years




One answer: abstraction
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e \What if we have too many raw numbers? 3
e (0,0)(0,9) (1,8) (1,1) (2,2) (2,7) (3,0) 2
(3,3) (3,6) (3,9) (4,1) (4,4) (4,5) (4,8) !
(5’2)( )(’)( )( )( )( ) ® 0123456789101 1213
(9,3) (9,6) (10,2) (10,6) (11,1) (11,3)
(11,6) (12,0) (12,3) (12,6) (13,3) (13,6)
e Need visual summaries!

3.5

e Simple example: histograms

1.75

e quantise value range into set of discrete buckets 0

0123 456 7 8 9 10111213

e visualize the buckets :

o W
s OO0 0O

: . . : . "y ; I:II:I I:II:I Oooooo

e As always, choice of visualization is critical ; O O

4 O 00
3 O O O 000
2 O 0O O



Continuous scatterplots I
UNIVERSITY OF LEEDS

Scientific data are discrete samples of a
continuous field

Discrete scatterplots miss important
detail: the "bits between the samples”!

Useful! But the result is an image, not
an abstraction.

Bachthaler & Weiskopf, Continuous Scatterplots, IEEE TVCG
Carr, Geng, Tierny, Chattopadhyay & Knoll, Fiber Surfaces: 14(6), 2008

Generalizing Isosurfaces to Bivariate Data, Eurovis, 2015.




Introducing scalar topology

e Rubber-sheet geometry

e (Captures properties unchanged under

e continuous deformation
e affine transformation

Example courtesy of Hamish Carr

UNIVERSITY OF LEEDS

contour EX
nesting 4

contours
with paths

contour
tree



More formally ... n
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e Assumptions
o scalarfieldf: M c R™ — R

e samples at discrete points in bounded domain
e subdivided into discrete [simplicial] cells

e \/ocabulary for “interesting things” in space
e J|ocal / global minima & maxima

e saddles

e Segment domain into regions of
equivalence

e Reeb graph (contour tree):
® regions inside and outside a contour
® contour connectivity
® captures nesting of contours

e Morse-Smale complex:

e watershed and inverse watershed

e regions of equivalent gradient / flow @ minima

® captures “diamond” boundary of regions O maxima
O saddle



Practical examples T
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Raleigh-Taylor instability, | 152 x 1152 x 1000

Gyulassy, Bremer, Hamann, Pascucci, A Practical Approach to Morse-
Smale Complex Computation: Scalability and Generality, [IEEE TVCG
14(6),2008

Carr, Snoeyink, & van de Panne, Flexible isosurfaces: Simplifying and displaying
scalar topology using the contour tree, Computational Geometry, 2010.

Schneider,Wiebel, Carr, Hlawitschka, and
Scheuermann, Interactive Comparison of
Scalar Fields Based on Largest Contours
with Applications to Flow Visualization,

L2 isosurface from CFD simulation of a Francis turbine. IEEETVCG, 14(6), 2008.




Challenge: multifield visualisation
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e Understand interaction between properties

e Routine in information visualization

e Tufte: “Graphical excellence is nearly always multivariate”

e For scientific datasets:

e Harder! Data pinned to points in physical space/time
e Ad-hoc methods: overlay; probing; scatterplot matrices




Multifield topology: Joint Contour Net
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e Generalisation of the Contour Tree / Reeb Graph

e family of scalar fieldsf: M c R™ — R"

e Segment domain into regions
... based on combinations of field value.

e JCN

e nodes = equivalence classes in range (intervals)
e edges = adjacency

[6-9) / [6-9)

e reduces to Reeb graph
(Contour tree) for n=1.

[6-9) / [4-6)

e No simple concept of
minimum / maximum /
saddle.

[6-9) / [4-6)

e Any dimension domain.

[6-9) / [1-4)




JCN construction n
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1. frags := cells
4.5/4.5 2. For each field d
3. for each £ in frags
., 4 remove f from frags

3.5 5. subdivide f against d
6. insert results into frags
7. uf := UnionFind over frags
8. for each a,b in frags, a /= b
9. if a,b are adjacent AND
10. AND a,b have equivalent field values
11. then merge a,b in uf
12. JCNnodes := uf classes
13. JCNedges := { (a,b) in JCNnodes

14. | a /= b AND a,b adjacent }




JCN examples T
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nucleus 1

e Nuclear fission
IEEE Visualization 2012
Physical Review C 90(5) 2014
Physical Review C 91(3) 2015

e (Oceanography
Topological Methods in Visualisation 2015

e Hurricane formation

Computer Graphics & Visual Computing 2014 shefls
e Mathematics of singular fibers
|IEEE Visualisation 2015
Outflow Air

Deep level sink,
deep water formation

Cold Water Stream
on upper level of the sea

Water sink to
middie level of ik ” L NP
the sea - N\ ‘ ¢ S s N e

" Hot and warm region
" on upper level of sea

JCN Graph Hurricane Mechanics



Functional Programming m
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o Why?
e unexplored territory!
e much easier / faster / cheaper to explore implementation space

e build a trusted reference implementation
(cf. testing)

e |onger-term aims: application-quality implementation
e in-situ visualization (laziness / streaming)
e heterogeneous platforms (SE costs)
® previous successes with
e streaming (lazy marching cubes, Vis 2006)
e DSLs for data visualization (Vis 2008, ICFP 2008)

e \Why not?
e Haskell not widely known or used in Vis / HPC
e vis infrastructure comparatively poor (HOpenGL + ?)
e collaborator wants insight, not beautiful code



Sequential code - types m
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data Ptope d r Ptope TopeMark !Int [Ptope d r]

| Point TopeMark !d !r
|

Nil
data TopeMark = None -- no mark yet computed
| CPOS -- polytope is strictly above wrt cut
| CMIN —-- polytope is strictly below cut
| CEQ —- polytope lies in cutting plane
data Outcome = NonePlus —-— No facet is strictly above the cut plane.
| NoneMinus -- No facet is strictly below the plane.
| Mixed —-— >=1 facet lies on either side of the plane.
| AllEqual —- All facets lie in the plane.
type Break d r = ([Ptope d r], [Ptope d r], [Ptope d r]) (da, ra)
-—- For testing /‘\
edge da db ra rb = Ptope None 1 [ Point None da ra
, Point None db rb]
tri da db dc ra rb rc /
= Ptope None 2 [ edge da db ra rb ‘ \
, edge db dc rb rc 7

, edge da dc ra rc]

(db, rb) (de. o)



Sequential code - polytope cutting n
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cut :: (Coord d, Coord r) => Int -> Double -> Break d r -> Ptope d r -> Break d r
cut !i !v (mas, eas, pas) !pt
= case pt of

Point d r -> let !c = classify v (r .! 1)
!p = Point ¢ d r
in case c of

CEQ -> ( mas, p:eas, pas)
CPOS -> ( mas, eas, p:pas)
CMIN -> (p:mas, eas, pas)

Ptope d ps -> case split fm fe fp of

AllEqual -> (mas, (Ptope CEQ d fe) : eas, pas)
Mixed -> let pl = (base d fp)
ml = (base d fm)
(da,ra) in ((Ptope CMIN d ml) : mas, eas, (Ptope CPOS d pl) : pas)
P 4 NonePlus -> ((Ptope CMIN d (fm++fe)) : mas, eas, pas)
' CPOS NoneMinus -> (mas, eas, (Ptope CPOS d (fet+fp)) : pas)
where
(fm, fe, fp) = foldl' (cut i v) ([1,[1,[]) ps
base 1 ps = mid : ps
Q, bése n pé = Ptope CEQ (n-1) [p | p <- concatMap facets ps, mark p == CEQ] : ps
QB mid = Point CEQ dp rp
where
[Point @ da ra, Point db rb] = (fmt++fe++£fp)
CMIN lai = ra .! 1
'bi = rb .! 1
‘ CPOS Ip = (v - ai) / (bi - ai)
' !dp = czipWith (\u v -> (1l-p)*u + p*v) da db
(db,rb) !rp = czipWith (\u v -> (l-p)*u + p*v) ra rb

(dc, rc)




Sequential code - fragment merger N
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data Fragment d r = Fragment { fragCoord :: r

, fragFacets :: [d]
}
linkFaces :: (Coord d, Coord r)
=> FragValue s r -- map from fragment nr to range value
-> Int -- number (id) of fragment containing these faces
-> UnionFind s -- the union-find structure
-> KD.KDtree d Int -- spatial search structure for fragment centers
-> [(Int, Int)] -- current proto-graph (edges between adjacent fragments)
-> [d] -- list of face center points still to process

-> ST s (KD.KDtree d Int, [(Int, Int)])

linkFaces sb n uf faces gr [] = return (faces, gr)
linkFaces sb n uf faces gr (f:fs)
= do case KD.find f faces of
Nothing -> let kd = KD.insert f n faces

in linkFaces sb n uf kd gr fs
Just m -> do { nval <- sb "getA™ n CIJ
; mval <- sb "getA” m [ ]
; if nval == mval
then do { union n m uf F‘
; let kd = KD.delete f faces
; linkFaces sb n uf kd gr fs
} ‘L-v
else do { let kd = KD.delete f faces
; linkFaces sb n uf kd ((n,m):gr) fs
}



Opportunities for parallelisation n
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e ... can be non-trivial to spot!

makedJCN :: (Coord d, Coord r) => (d, d) -> r -> r -> [Cell d r] -> JCN d r
makeJCN extent fmin swid
= mergeFrags extent
. concatMap (cellFrags fmin swid)

cellFrags :: (Coord d, Coord r) => r -> r -> Cell d r -> [Fragment d r]
cellFrags fmin swid
= map (mkfrag fmin swid) . polytopes fmin swid

mkfrag :: (Coord d, Coord r) => r -> r -> Ptope d r -> Fragment d r
mkfrag fmin swid ptps
= let mins = czipWith3 slab fmin swid crds
crds = minCorner $ rngCoords ptps
centers = map center . ptfacets $ ptps
in Fragment mins centers

dice :: (Coord d, Coord r) => [Ptope d r] -> (Int, [Double]) -> [Ptope d r]
dice ptopes (i, []) = ptopes
dice ptopes (i, (v:vs))

= below ++ dice above (i, vs)

where
(below, above) = diceEach ptopes ([], [1])
diceEach [] res = res
diceEach (p:ps) (bs, as)

= let (!mls,!l!els,!pls) = cut i v ([1, [1, [1) P
in diceEach ps (mls ++ bs, els ++ pls ++ as)



Parallel Topology n
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e Historically challenging to parallelize topology
e topology = global property
e stubbornly seriall
e analysis overhead already large (est. 1.2KB per point)
e divide-and-conquer (Cole-McLaughlin & Pascucci)
e cost of maintaining information to "zip" partial solutions

e | arge-scale datasets => emphasis on distributed memory
e communication costs dominate
e solutions to date:
e distribute the data structure, then query (Weber & Morozov)
e stratify, terminate at desired resolution (Gyulassy, Landge, Pascucci et.al.)



The parallel Haskell jigsaw
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Run-time System
* GHC
* GdH
® Fden

* Grid-GUM




Skeletons
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Structured Management of Parallel Computation, Cole, 1989.

e Algorithmic Skeletons:

e From Loogen et.al.
e commonly-used patterns of parallel evaluation

e simplify development .. can simply be used in a given application context
e may be different implementations

o efficiency given by a cost model

‘ For a functional programmer, skeleton = HOF I



Par Monad §
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e Deterministic and explicit parallel computation

e Computations that fork and communicate

e |Vars for data communication

e Thread evolution as continuation monad over a meta-scheduler state
e [mplemented using reflection of GHC RTS

e |nterface

class NFData where ...

runPar :: Par a -> a

fork :: Par () -> Par ()

new :: Par (IVar a)

put :: NFData a => IVar a -> a -> Par ()

get :: IVar a -> Par a



Skeletons in the Par monad

e Parallel map:

parMap :: NFData b => (a -> b) -> [a] -> Par [Db]
parMap f [] =[]
parMap f (a:tas) = do b <- spawn $ return (f a)

bs <- parMap f as
return $ b:bs

e Chunked map:

parMapChunk :: Int -> (a -> b) -> [a] -> Par [b]

e Divide-and-conquer:

parDaC :: NFData s
=> (p -> Bool) -— can the problem be simplified?
-> (p -> (p,p)) —— subdivide problem
-> (s -=> s -> s) -- merge two solutions
-> (p -> 8) -- solve a "trivial" problem
-> p —-— initial problem

-> s —— solution

n

UNIVERSITY OF LEEDS
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Intermission



Parallelizing JCN n
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e Embarrassingly parallel

e partition the domain

e compute local JCNs oartition f o\
e merge JCNs to generate the global structure

e |nput/Output

e Each process access the input files directly

e The main process write the final JCN to the output file compute ;

e Merger
e need to capture fragment adjacencies
e solution:
e facet mid-points are unique

e store in spatial search structure (KD-tree)



Divide-and-conquer skeleton T
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parDaC :: NFData s
=> (p -> Bool) -- 1is trivial?
-> (p -=> (p,p)) -- subdivide
-> (s -=> s -> s) -- merge
-> (p => s) —-— compute
->p
-> s

parDaC refine split merge solve problem
= runPar $ go problem
where go p
| refine p

= do let (pl, p2) = split p
sl <- spawn $ go pl

1iftM2 merge (get sl) (get s2) /\

s2 <- spawn $ go p2
| otherwise = return (solve p)




Map skeleton f
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e Exploit parMap

mapSkel :: NFData s
=> (p -> [spl) -- split into sub-problems
-> (sp -> ss) -—- solve a sub-problem
-> ([ss] =-> s) -- merge sub-problem solutions
-> p -— 1initial problem
-> s -- solution

mapSkel split solve merge p
= runPar . liftM merge . parMap solve . split $ problem

e parMapChunk variant



Eager skeleton
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e One thread spawned for each subproblem & merge step

e |nput divided into stream of subproblem pairs

e |\ars communicate solutions towards the root

eager split solve merge p

= runPar $ do

let mt 1 r = spawn $ 1liftM2 merge (get 1 ) (get r)
let tree = sched (return © solve) mt
(mrgJobs, ) <- foldM tree ([]1,[]1) $ split p

finishMerger mTask mrgJobs >>= get

SINOIREEIIETN

Compute JCNs &

stream of I I I I I l

subproblems



Pipeline skeleton
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e Eager Skeleton was too eager
e fragmentation faster than merger

e |eaves complete, building up large volume of data

e Rate-limiting mechanism

e delay fragmentation until pending mergers complete

(" ) (" ) (" )

Create Compute JCN Merge
Subproblem Stream
1131 :

\-




Parallel Performance
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Distributed-memory parallelism n
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o Why?
¢ massive simulations
e e.g. PB-scale combustion studies at SCI (Utah) and LBL

e Distributed topology

e Distributed merge/contour tree implementations [on Cray]
(Morozov & Weber, 2013)

e Partial trees are distributed across nodes

e Platform
e ARC1: cluster built on 32-core nodes
e Using Eden, a distributed-memory fork of GHC
e Eden Trace-Viewer: similar to threadscope, currently less information

e Starting point: three Eden skeletons
e parallel map-reduce (disMapReduce)
e distributed divide-and-conquer (disDC)
e workpool



Eden language n
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e Eden primitive constructs:

class Trans a where

process :: (Trans a, Trans b) => (a -> b) -> Process a b

(#) :: (Trans a, Trans b) => Process a b -=> a -> Db

e Eden’s RTS extends the GHC runtime system:
e process creation (strict)
e task placement
e synchronisation

e data communication

¢ implicit parent-child channels

e explicit creation and use of dynamic channels



Eden skeletons N
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e Map-reduce:

map :: (a -> b) -> [a] -> [Db]

foldr :: (b -=> ¢ -> ¢) -> ¢ -> [b] -> ¢

mapRedr :: (b -> ¢ ->c¢c) -=> ¢ -> (a -> b) -> [a] -> ¢
mapRedr rf e mf = (foldr rf e) . (map mf)

e Distributed map-reduce:

disMap :: (Trans a, Trans b) -> (a -> b) -> [a] -> [b]

disMapRedr :: (Trans a, Trans b) => (b -> b -> b) -=> b -> (a -> b)->[a] -> b
disMapRedr rf e mf xs
| noPe == 1 = mapRedr g e f xs
| otherwise = (foldr rf e)
(disMap (disMapRedr rf e mf))
(splitIntoN noPe) $ xs



The Experimental Platform
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e ARC?2 : One of the HPC clusters at University of Leeds

Compute » 3040 cores
* Each Node has

* A dual socket with 2.6GHz 8-core Intel E5-2670
Processors

« 32GB of DDR3 memory
« 500 Gb of local Hard drive

Storage - Lustre file system
* Delivering 4GB/s via the InfiniBand network
- 170TB storage

Network « All user traffic data is transferred over InfiniBand network

- Gigabit for management




Distributed Divide and Conquer Skeleton
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®* The best performance on shared memory implementation

disDC :: (Trans a, Trans b)
=> Int — branching degree
-> Places — ticket list
-> (a -> Bool) — trivial?
-> (a => b) — solve
-> (a -> [a] — split
-> (a -> [b] -> b) — merge
-> a — input
-> b

A ( \C‘ D _> /".' Q_‘
AN

dividing the domain computing local JCNs and
reducing them into a global structure




Unbalanced Computation Load f
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e JCN Computation on scission dataset
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e JCN is a data dependent computation

¢ Divide and Conqguer skeleton leads to an unbalance computation load



Over-decomposition n
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e Common strategy in computational science
e decompose problem into N >> no. PEs
¢ maintain work pool of tasks
e scheduler "smooths over" differences from data dependencies

e dynamic load balancing

e Eden has a workpool skeleton

workpool :: (Trans t, Trans r)
=> Int -- number of workers
-> Int ——- prefetch
-> (t -> r) -- map function
-> [t] —- list of tasks
-> [r]

e (Could be used for both fragmentation and merger ..



Eden Workpool
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e Eden library provides several extensions that integrate map
and reduce functions

e BUT all allow merger of intermediate results in arbitrary order

e This is a problem (why?)

/ Yy
—_—
—_ B
~ > fragment :
decompose local JCN graphs first merge task

e Fortunately, strategies are just Eden functions ...

® .. SO we can write our own.



Designing a new skeleton

UNIVERSITY OF LEEDS

e Seek dynamic load balancing in both map and reduce stages

o Multi-level reduction of spatially-adjacent sub-problems

® uses a merger function that matches intermediate results in a multi-level scheme




newWorkpool
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e A new workpool skeleton for JCN-like computations




newWorkpool: run-time profile
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903 !ﬂ: !:: 10

e JCN of Isabel dataset on 32 PEs



Performance of Distributed JCN n
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JCN without Merger

Scission Dataset — 40 x 40 x 66
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Isabel Dataset — 125 x 125 x 100
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A distributed JCN representation
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e Observation: merging JCNs involves only nodes on sub-problem boundary
o Alternative strategy:

¢ distributed representation

® incremental updates

o/

N

e Challenge: over-decomposition gives [initial] subproblems with small interior graph



Shared & Distributed Mem Implementation
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© Shared-Mem O DC newWorkpool

N2 N4 N8 N16
Number of Cores



What we achieved / found ... I
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e Unexpected lessons on skeletons
e skeletons can themselves be non-trivial functions
e conveniently abstract for straightforward cases
e jnconveniently abstract for understanding performance
e can we have our cake and eat it too?
e ... are there sensible building blocks for skeletons?

e Jooling still an issue

e Peter Wortmann's enhanced profiling support invaluable - but further work needed
(see Haskell Symposium 2013 paper)

¢ hard to measure communication costs
e profiling over 100's of cores
e integrating IO into skeletons and distributed Haskell

e Contributions
e scaled parallel JCN implementation from small to modest datasets
e understood issues affecting further scaling
e achieved some impact ...



Impact f
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e Haskell not yet on the cover of Nature ...

e ... but two Physical Review C papers are a start ...

PHYSICAL REVIEW C 90, 054305 (2014)

Description of induced nuclear fission with Skyrme energy functionals: Static potential energy
surfaces and fission fragment properties

N. Schunck,’ D. Duke,” H. Carr,” and A. Knoll®
! Physics Division, Lawrence Livermore National Laboratory, Livermore, California 94551, USA
School of Computing, University of Leeds, Leeds, United Kingdom
Argonne National Laboratory, Argonne, lllinois, USA
(Received 11 November 2013; revised manuscript received 17 September 2014; published 6 November 2014)

Eighty years after its experimental discovery, a description of induced nuclear fission based solely on the
interactions between neutrons and protons and quantum many-body methods still poses formidable challenges.
The goal of this paper is to contribute to the development of a predictive microscopic framework for the accurate
calculation of static properties of fission fragments for hot fission and thermal or slow neutrons. To this end, we
focus on the “**Pu(n, f) reaction and employ nuclear density functional theory with Skyrme energy densities.
Potential energy surfaces are computed at the Hartree-Fock-Bogoliubov approximation with up to five collective

PHYSICAL REVIEW C 91, 034327 (2015)

Description of induced nuclear fission with Skyrme energy functionals. IL. Finite temperature effects

N. Schunck,' D. Duke,’ and H. Carr®
' Physics Division, Lawrence Livermore National Laboratory, Livermore, California 94551, USA
ISchool of Computing, University of Leeds, United Kingdom
(Received 23 January 2015; published 25 March 2015)

Understanding the mechanisms of induced nuclear fission for a broad range of neutron energies could help
resolve fundamental science issues, such as the formation of elements in the universe, but could have also a large
impact on societal applications in energy production or nuclear waste management. The goal of this paper is
10 set up the foundations of a microscopic theory to study the static aspects of induced fission as a function of
the excitation energy of the incident neutron, from thermal to fast neutrons. To account for the high excitation
energy of the compound nucleus, we employ a statistical approach based on finite temperature nuclear density
functional theory with Skynme energy densities, which we benchmark on the **Pu(n, f) reaction. We compute



Broader issues n
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e So why isn't Haskell used in ..

e .. computational science (Fortran, C/C++, Chapel, OpenCL, ...)
e .. computer graphics & games (C++, C++, C++, C++, ...)

e .. <insert your favourite application area>?

e TJechnology

e technology only just mature

e absence of a standard (who programs in Haskell'98 these days?!)
® tools, esp. cost modelling and profiling

® |egacy code and inertia

e (different engineering challenges and trade-offs from success areas

e People issues

® Your top C++ programmer leaves ... replace in days
e Your top (HPC) Haskell programmer leaves ... replace when?

® Project risk against likely benefits



What we achieved ... nN
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e (Contributions

e scaled parallel JCN implementation from small to modest datasets
e understood issues affecting further scaling

e Unexpected lessons on skeletons
e skeletons can themselves be non-trivial functions
e conveniently abstract for straightforward cases
e jnconveniently abstract for understanding performance
e can we have our cake and eat it too?
e _.. are there sensible building blocks for skeletons?

e Tooling still an issue

e e.g. measuring communication costs, profiling over 100s of cores, 10

e (Ongoing and future work

e moving work towards GPU clusters

e heterogeneous resources, complex memory hierarchy
e in-situ processing

e run on Tianhe-2 ?!



Future
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e Challenges
e Haskell / FP have made inroads in some sectors
e Why? What do they excel at?
e EDSLs - Obsidian, Repa, Accelerate ...
e Heterogeneous resources, complex memory hierarchy
® |n-situ processing

e Try running on Tianhe-2 ?!

e Current plans
e Memory-sensitive representation

e Games - one of the most performance-critical CS applications
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