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This is an updated version (Monday 25 May) since there were a few errors
in the previous version. Chapter references are to the course book. Apologies
for typos and errors. (When you write your exam you should be more explicit
in your solutions than these notes are.)
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1. • What is the definition of a Determinstic Finite Automaton?

The answer is simply the five-tuple with states, input symbols,
transition function, start state and final states with the correct
requirements, i.e., the set of states has to be finite, the transition
function has to be a total function taking a state and an alphabet
symbol and outputs a state etc. (see 2.2.1 p. 46 in the book for
the rest.)

• Explain what is the language determined by such a finite automa-
ton (1p)

It’s the set of strings w ∈ Σ∗ such that δ(q0, w) is a final state.
Details see 2.2.5.

• Explain why such a language is a context-free language (1p).

Every regular language is (also) context-free as it is accepted by,
for example, a right-linear CFG. (A formal proof of this is exercise
5.1.4.)

2. Minimize the following automaton (2p)

Apply the state distinguistishability algorithm described in 4.4.

1



0, 1, 2, 4 are distinguishable from 3, 5 (via ε). 0 and 2 as well as 1 and
2 are distinguishable via b. 4 is distinct from 0, 1, 2 via a. So we merge
[0,1] and [3,5].

3. Build a NFA with 3 states that accepts the language {ab, abc}∗ (2p)

Note that an NFA (not a DFA) is being asked for. Let X1, X2, X3 be
the three states with X1 initial and X1, X3 final. Let there be an a-
transition from X1 to X2, b-transition from X2 to X3, and c-transition
from X3 to X1, and an ε-transition from X3 to X1.

4. Build a DFA corresponding to the regular expression (ab)∗ + a∗. (3p)

Perhaps the easiest is to first build a NFA and then convert it to a
DFA.

Another way is to look at the derivatives (see the slides around the
Myhill-Nerode theorem for algorithm and proof of correctness, not so
much in the book). We then get:
ε/L = (ab)∗ + a∗

a/L = b(ab)∗ + a∗

b/L = ∅
aa/L = a∗

ab/L = (ab)∗

aba/L = b(ab)∗

Though when you do your solutions in the exam you should also argue
that these are the only derivatives. The derivatives give the following
DFA (where F is the name for the ∅ state, and the others named in
the order of above):

a b
A B F
B C D
C C F
D E F
E F D
F F F

A initial and A, B, C, D final.

5. Give a regular expression E such that L(E) = Σ∗ − L(10(0 + 1)∗) (2p)
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The language asked for is the language of strings that don’t begin with
10 so (11 + 01 + 00)(0 + 1)∗ + 0 + 1 + ε should do the trick.

6. Build a DFA that recognizes exactly the word in {0, 1}∗ ending with
the string 1110. (2p)

0 1
A A B
B A C
C A D
D E C
E A B

With A initial and E final.

7. Is the following grammar ambiguous? Why? (2p)

aab has two parse trees. One in which it has height 2 and comes from
S → aaB and B → b. Another in which it has height 3 and comes
from S → AB, A→ aA, A→ a and B → b.

We have to be a bit clever and see that the language generated is a∗b
so an equivalent non-ambiguous grammar simply drops the S → aaB
rule.

8. Show that the string aabbabba is not in the language generated by this
grammar (3p).

The best way to show this is to transform the grammar into a CNF
and then parse the string and see that S is not in the top-left corner.
Another way is as follows. If S =>∗ aabbabba then clearly B =>∗

bbabba and, in turn A =>∗ bbabb and in turn B =>∗ bab. But there is
no way that B =>∗ bab because B → Aa, being the only rule for B,
must produce a stringe ending with a.

9. Find context-free grammars for the languages

For b, see exercise 5.1.1b which shows the trick and has an online
solution. For a, contact me if you find a CFG for the language.

10. Let L,M,N be languages on an alphabet Σ∗. Explain why we have
L(M ∩N) ⊆ LM ∩ LN (2p).
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Let w be an arbitrary string in the LHS set. Then we can break w = xy
into parts x ∈ L and y ∈ M ∩ N . Since y ∈ M ∩ N we have y ∈ M
and y ∈ N . Since y ∈ M , y ∩ N and x ∈ L we have xy ∈ LM and
xy ∩ LN . Since xy ∈ LM and xy ∩ LN we have w ∈ LM ∩ LN .

Give an example showing that we do not have LM ∩LN ⊆ L(M ∩N)
in general (2p).

With L = {ε, a}, M = {a}, N = {aa} we have LM ∩ LN = {aa} but
RHS is empty.

11. Yes L2 is regular. If w ∈ L1∪L2 and w ∈ L1 then because L1∩L2 = ∅,
w must be in L2. So an automaton for (L1 ∪L2)∩L1 is an automaton
for L2. There is such an automaton since regular languages are closed
under union, intersection and complementization.

20070531

1. What is, mathematically, a context-free Language (1p)? Give, with
motivation, an example of a language which is context-free, but not
regular (1p) and an example of a language which is not context-free
(1p)

A context-free language is a set {w ∈ T ∗|S =>∗ w} where S is the start
category of a context-free grammar. See 5.1.2 and 5.1.5 for details.
Examples of the kind requested can be found in chapter 5 (and many
other places in the literature for the course).

2. Prove this, e.g., by induction on x.

3. Very similar to 5 on the previous exam.

4. Very similar to 2 on the previous exam.

5. Very similar to 6 on the previous exam.

6. Very similar to 4 on the previous exam.

7. Hint: A−B (set difference) is the same as A ∩B

8. Yes. Because abab has two parse trees. One via S → SS, S → ab, S →
ab and one via S → aSb, S → ba.
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9. a. Let L1 = Σ∗ and L2 = {anbn|n ≥ 1}.
b. Let L1 = {ab} and L2 = {anbn|n ≥ 1}.

10. First one:

We first write a (non-CNF) CFG grammar for the language:
S → AC
A→ abb|aAbb
C → c|cC

which is easily transformed into CNF by introducing new symbols
S → AC
B → b
D → BB
F → a
G→ FA
A→ FD|GD
C → c|CC

Second one, we first write a (non-CNF) grammar:
S → aBa|aSa
B → b|bB

which is easily transformed into CNF (omitted).

11. (a) Any subset of a regular language is regular (1p)

No, {anbn|n ≥ 1} is a subset of {a, b}∗.
(b) If Ln is a family of regular language then ∪nLn is regular (1p)

No, let Li = {aibi}, then the infinite union will yield a non-regular
language.

12. Use pumping lemma, on e.g., the string bNcN where N is the constant
of the pumping lemma.

13. Explain why if L is regular then so is L/a for any a ∈ Σ (2p).

If L is regular then L has an automaton. Remove all the transitions with
other symbols than a from the start state. Replace all the a-transitions
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from the start state with epsilon transitions instead. We now have a
NFA for L/a so L/a is regular. An automaton for (L/a)a is similarly
constructed from that of L/a by adding a new final state (and removing
the final-ness from the old final states). Then put a-transitions from
all old final states to the new final one.
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