
Finite Automata Theory and Formal Languages

TMV027/DIT321– LP4 2015

Lecture 13
Ana Bove

May 18th 2015

Overview of today’s lecture:

Closure properties of CFL;

Decision properties of CFL;

Push-down automata.

Recap: Context-free Grammars

Regular languages are also context-free;

Chomsky hierarchy;

Simplification of grammars:

Elimination of ε-productions;
Elimination of unit productions;
Elimination of useless symbols:

Elimination of non-generating symbols;
Elimination of non-reachable symbols;

Chomsky normal forms;

Pumping lemma for context-free languages.

May 18th 2015, Lecture 13 TMV027/DIT321 1/21

Closure under Union

Theorem: Let G1 = (V1,T ,R1, S1) and G2 = (V2,T ,R2, S2) be CFG.
Then L(G1) ∪ L(G2) is a context-free language.

Proof: Let us assume V1 ∩ V2 = ∅ (easy to get via renaming).

Let S be a fresh variable.

We construct G = (V1 ∪ V2 ∪ {S},T ,R1 ∪R2 ∪ {S → S1 | S2},S).

It is now easy to see that L(G) = L(G1) ∪ L(G2) since a derivation will
have the form

S ⇒ S1 ⇒∗ w if w ∈ L(G1)

or
S ⇒ S2 ⇒∗ w if w ∈ L(G2)

May 18th 2015, Lecture 13 TMV027/DIT321 2/21

Closure under Concatenation

Theorem: Let G1 = (V1,T ,R1, S1) and G2 = (V2,T ,R2, S2) be CFG.
Then L(G1)L(G2) is a context-free language.

Proof: Again, let us assume V1 ∩ V2 = ∅.

Let S be a fresh variable.

We construct G = (V1 ∪ V2 ∪ {S},T ,R1 ∪R2 ∪ {S → S1S2},S).

It is now easy to see that L(G) = L(G1)L(G2) since a derivation will have
the form

S ⇒ S1S2 ⇒∗ uv

with
S1 ⇒∗ u and S2 ⇒∗ v

for u ∈ L(G1) and v ∈ L(G2).

May 18th 2015, Lecture 13 TMV027/DIT321 3/21

Closure under Closure

Theorem: Let G = (V ,T ,R, S) be a CFG.
Then L(G)+ and L(G)∗ are context-free languages.

Proof: Let S ′ be a fresh variable.

We construct G + = (V ∪ {S ′},T ,R∪ {S ′ → S | SS ′}, S ′) and
G∗ = (V ∪ {S ′},T ,R∪ {S ′ → ε | SS ′},S ′).

It is easy to see that S ′ ⇒ ε in G∗.

It is also easy to see that S ′ ⇒∗ S ⇒∗ w if w ∈ L(G) is a valid derivation
both in G + and in G∗.

In addition, if w1, . . . ,wk ∈ L(G), it is easy to see that the derivation

S ′ ⇒ SS ′ ⇒∗ w1S ′ ⇒ w1SS ′ ⇒∗ w1w2S ′ ⇒∗ . . .
⇒∗ w1w2 . . .wk−1S ′ ⇒∗ w1w2 . . .wk−1S ⇒∗ w1w2 . . .wk−1wk

is a valid derivation both in G + and in G∗.
May 18th 2015, Lecture 13 TMV027/DIT321 4/21

Non Closure under Intersection

Example: Consider the following languages over {a, b, c}:

L1 = {akbkcm | k,m > 0}

L2 = {ambkck | k ,m > 0}

It is easy to give CFG generating both L1 and L2, hence L1 and L2 are
CFL.

However L1 ∩ L2 = {akbkck | k > 0} is not a CFL (see slide 26 lecture 12).

May 18th 2015, Lecture 13 TMV027/DIT321 5/21

Closure under Intersection with Regular Language

Theorem: If L is a CFL and P is a RL then L ∩ P is a CFL.

Proof: See Theorem 7.27 in the book.

(It uses push-down automata which we have not seen.)

Example: Consider the following language over Σ = {0, 1}:

L = {ww | w ∈ Σ∗}

Consider now L′ = L ∩ L(0∗1∗0∗1∗) = {0n1m0n1m | n,m > 0}.

L′ is not a CFL (see additional exercise 4 for week 7).

Hence L cannot be a CFL since L(0∗1∗0∗1∗) is a RL.

May 18th 2015, Lecture 13 TMV027/DIT321 6/21

Non Closure under Complement

Theorem: CFL are not closed under complement.

Proof: Notice that
L1 ∩ L2 = L1 ∪ L2

If CFL are closed under complement then they should be closed under
intersection (since they are closed under union).

Then CFL are in general not closed under complement.

May 18th 2015, Lecture 13 TMV027/DIT321 7/21

Closure under Difference?

Theorem: CFL are not closed under difference.

Proof: Let L be a CFL over Σ.

It is easy to give a CFG that generates Σ∗.

Observe that L = Σ∗ − L.

Then if CFL are closed under difference they would also be closed under
complement.

Theorem: If L is a CFL and P is a RL then L − P is a CFL.

Proof: Observe that P is a RL and L − P = L ∩ P.

May 18th 2015, Lecture 13 TMV027/DIT321 8/21

Closure under Reversal and Prefix

Theorem: If L is a CFL then so is Lr = {rev(w) | w ∈ L}.

Proof: Given a CFG G = (V ,T ,R,S) for L we construct the grammar
G r = (V ,T ,Rr, S) where Rr is such that, for each rule A→ α in R, then
A→ rev(α) is in Rr.

One should show by induction on the length of the derivations in G and
G r that L(G r) = Lr.

Theorem: If L is a CFL then so is Prefix(L).

Proof: For closure under prefix see exercise 7.3.1 part a) in the book.

May 18th 2015, Lecture 13 TMV027/DIT321 9/21

Closure under Homomorphisms

Theorem: CFL are closed under homomorphisms.

Proof: See Theorem 7.24 point 4 in the book.

(It uses the notion of substitution which we have not seen.)

May 18th 2015, Lecture 13 TMV027/DIT321 10/21

Decision Properties of Context-Free Languages

Very little can be answered when it comes to CFL.

The major tests we can answer are whether:

The language is empty;

(See the algorithm that tests for generating symbols in slide 6 lecture 12:

if L is a CFL given by a grammar with start variable S , then L is empty if S is not

generating.)

A certain string belongs to the language.

May 18th 2015, Lecture 13 TMV027/DIT321 11/21

Testing Membership in a Context-Free Language

Checking if w ∈ L(G), where |w | = n, by trying all productions may be
exponential on n.

An efficient way to check for membership in a CFL is based on the idea of
dynamic programming.

(Method for solving complex problems by breaking them down into simpler problems,

applicable mainly to problems where many of their subproblems are really the same; not

to be confused with the divide and conquer strategy.)

The algorithm is called the CYK algorithm after the 3 people who
independently discovered the idea: Cock, Younger and Kasami.

It is a O(n3) algorithm.

May 18th 2015, Lecture 13 TMV027/DIT321 12/21

The CYK Algorithm

Let G = (V ,T ,R, S) be a CFG in CNF and w = a1a2 . . . an ∈ T ∗.

Does w ∈ L(G)?

In the CYK algorithm we fill a table

V1n

V1(n−1) V2n
...

...
V12 V23 V34 . . . V(n−1)n
V11 V22 V33 . . . V(n−1)(n−1) Vnn

a1 a2 a3 . . . an−1 an

where Vij ⊆ V is the set of A’s such that A⇒∗ aiai+1 . . . aj .

We want to know if S ∈ V1n, hence S ⇒∗ a1a2 . . . an.

May 18th 2015, Lecture 13 TMV027/DIT321 13/21

CYK Algorithm: Observations

Each row corresponds to the substrings of a certain length:

bottom row is length 1,
second from bottom is length 2,
. . .
top row is length n;

We work row by row upwards and compute the Vij ’s;

In the bottom row we have i = j , that is, ways of generating the
string ai ;

Vij is the set of variables generating aiai+1 . . . aj of length j − i + 1
(hence, Vij is in row j − i + 1);

In the rows below that of Vij we have all ways to generate shorter
strings, including all prefixes and suffixes of aiai+1 . . . aj .

May 18th 2015, Lecture 13 TMV027/DIT321 14/21

CYK Algorithm: Table Filling

Remember we work with a CFG in CNF.

We compute Vij as follows:

Base case: First row in the table. Here i = j .
Then Vii = {A | A→ ai ∈ R}.

Induction step: To compute Vij for i < j we have all Vpq’s in rows below.

The length of the string is at least 2, so A⇒∗ aiai+1 . . . aj
starts with A⇒ BC such that B ⇒∗ aiai+1 . . . ak and
C ⇒∗ ak+1 . . . aj for some k .

So A ∈ Vij if ∃k , i 6 k < j such that

B ∈ Vik and C ∈ V(k+1)j ;
A→ BC ∈ R.

We need to look at
(Vii ,V(i+1)j), (Vi(i+1),V(i+2)j), . . . , (Vi(j−1),Vjj).

May 18th 2015, Lecture 13 TMV027/DIT321 15/21

CYK Algorithm: Example

Consider the grammar given by the rules

S → AB | BA A→ AS | a B → BS | b

and starting symbol S .

Does abba belong to the language generated by the grammar?

We fill the corresponding table:

{S}
∅ {B}
{S} ∅ {S}
{A} {B} {B} {A}

a b b a

S ∈ V14 then S ⇒∗ abba.
May 18th 2015, Lecture 13 TMV027/DIT321 16/21

CYK Algorithm: Example

Consider the grammar given by the rules

S → XY X → XA | a | b
Y → AY | a A→ a

and starting symbol S .

Does babaa belong to the language generated by the grammar?

We fill the corresponding table:

∅
∅ ∅
∅ ∅ {S ,X}

{S ,X} ∅ {S ,X} {S ,X ,Y }
{X} {A,X ,Y } {X} {A,X ,Y } {A,X ,Y }

b a b a a

S /∈ V15 then S 6⇒∗ babaa.
May 18th 2015, Lecture 13 TMV027/DIT321 17/21

Undecidable Problems for Context-Free
Grammars/Languages

Definition: An undecidable problem is a decision problem for which it is
impossible to construct a single algorithm that always leads to a correct
yes-or-no answer.

Example: Halting problem: does this program terminate?

The following problems are undecidable:

Is the CFG G ambiguous?

Is the CFL L inherently ambiguous?

If L1 and L2 are CFL, is L1 ∩ L2 = ∅?
If L1 and L2 are CFL, is L1 = L2? is L1 ⊆ L2?

If L is a CFL and P a RL, is P = L? is P ⊆ L?

If L is a CFL over Σ, is L = Σ∗?
May 18th 2015, Lecture 13 TMV027/DIT321 18/21

Push-down Automata

Push-down automata (PDA) are essentially ε-NFA with the addition of a
stack where to store information.

The stack is needed to give the automata extra “memory”.

Observe we can only access the last element that was added to the stack!

Example: To recognise the language 0n1n we proceed as follows:

When reading the 0’s, we push a symbol into the stack;

When reading the 1’s, we pop the symbol on top of the stack;

We accept the word if when we finish reading the input then the
stack is empty.

The languages accepted by the PDA are exactly the CFL.
See the book, sections 6.1–6.3.
May 18th 2015, Lecture 13 TMV027/DIT321 19/21

Variation of Push-down Automata

DPDA = DFA + stack: Accepts a language that is between RL and CFL.
The lang. accepted by DPDA have unambiguous grammars.
However, not all languages that have unambiguous
grammars can be accepted by these DPDA.

Example: The language generated by the unambiguous
grammar

S → 0S0 | 1S1 | ε
cannot be recognised by a DPDA.
See section 6.4 in the book.

2 or more stacks: A PDA with at least 2 stacks is as powerful as a TM.
Hence these PDA can recognise the recursively enumerable
languages (more on this later).
See section 8.5.2.

May 18th 2015, Lecture 13 TMV027/DIT321 20/21

Overview of Next Lecture

Section 8:

Turing machines.

Guest lecture by Prof. Aarne Ranta

Automata and Grammars in

Programming Language Technology

May 18th 2015, Lecture 13 TMV027/DIT321 21/21

