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Lecture 5
Classes, Components, and Nodes 

Rogardt Heldal
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Architecture: three facts
• Every application has an architecture

 The architecture of a system can be characterized by 
the principal design decisions made during its 
development 

• Every application has at least one architect
 Perhaps not known or recognized by that title 

• Architecture is not a phase of development
 Where did the software architecture come from? 
 How does it change over time?

Taylor, R. N., Medvidovic, N., and Dashofy, E. M. 2009 Software Taylor, R. N., Medvidovic, N., and Dashofy, E. M. 2009 Software 
Architecture: Foundations, Theory, and Practice. Wiley Architecture: Foundations, Theory, and Practice. Wiley 

Publishing.Publishing.
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Challenge

• The actual architecture of a system is not always exactly 
the one conceived by the architects
 The architecture is also emerging during development (bottom-up)
 Some architectural decisions are made unconsciously

• Which decisions have an impact on the architecture? –not easy

 Some “actual” architects do not have the title of architect

High-level 
architecture

 Ideas/vision 
of the system to be 

realized

Working architecture

Actual blueprint for the 
implementation teams, 

used in their daily 
work

GAP
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Problem to be solved

Descriptive 
models of the 
Ideas/vision 

of the system to 
be realized

Prescriptive 
models to 

develop the 
system even 

through 
automated code 
transformations

GAP
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Analysis
• So far we have done:

– Requirements
– Domain Models 
– Use Cases 

• These models are based on:
– Interviews 
– Observations 

– Workshops 
– Looking at similar systems 

Generate domain 
knowledge 

Comments: without a good analysis, one cannot obtain 
                     a good system. 

Descriptive 
models of the 
Ideas/vision 
of the system 
to be realized
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Problem to be solved

Descriptive 
models of the 
Ideas/vision 

of the system to 
be realized

Prescriptive 
models to 

develop the 
system even 

through 
automated code 
transformations

GAP

Need creativity
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Example

Domain model to class diagram
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Problem Domain: A Library

Book

ISBN
title
author

Exemplar

* exemplars

1

Lending

startDate
lendingPeriod
actualReturnDate

Customer

name

* lendings

1

runningLending

0..10..1

formerLendings

*0..1

**

waitingCustomers

{ordered}
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Class Diagram

Lending

startDate
lendingPeriod
actualReturnDate

Customer

name

* lendings

1

runningLending

0..1

formerLendings

*

*

waitingCustomers

{ordered}

ReturnController

0..1
0..1

*
remainingLendings

finishedLendings
*

identCustomer(String)
            :Lending[*]
returnBook(Lending)
finishReturn()

treatedCustomer

fee:Real

ReturnDialog

pressedOk()
pressedCancel()
selectedBook(Lending)

Button
ok1cancel 1

LendingList

1

1

*

   Observer
<<interface>>

update(Observable o)

Observable
notifyObservers()

*

Label

1feeLabel
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Reflection 
• Both use the syntax of class diagram
• But, different:

– Subject
– Consumer 
– Intent  
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Models 

Model IntentSubject

Consumer

The thing 
that the 
model is 

about

Model created with 
the intent that satisfies 

a particular purpose

Uses the model to 
satisfy/achieve his 

goals
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Gap between analysis and design

Analysis 

Design 

A lot of 
creativity 
to produce
the analysis But also a lot of 

creativity to 
produce design
from the analysis 
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Analysis
• So far we have done:

– Requirements

– Domain Models 
– Use Cases 

• These models are based on:
– Interviews 
– Observations 
– Workshops 
– Looking at similar systems 

Generate domain 
knowledge 

Can other types of models be part of the analysis phase? 

Descriptive 
models of the 
Ideas/vision 
of the system 
to be realized
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Descriptive vs Prescriptive 

Model IntentSubject

Consumer

Descriptive 
Model

is described by Prescriptive 
Model

prescribes
SubjectSubject SubjectSubject

   High-level 
Architecture

is described byIdeas/vision 
of the system 
to be realized

Ideas/vision 
of the system 
to be realized

Working 
Architecture

prescribesSystem to 
be realized
System to 
be realized

The thing that 
the model is 

about

Model created with the 
intent that satisfies a 

particular purpose

Uses the model to 
satisfy/achieve his 

goals
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Complex system 

• Might need other types of diagram in the 
analysis phase:
– Components 

– Nodes 

– State machines 

– …
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Example: show the ECUs in a car
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Example: State machine to explain 
the behavior of an oven

Close_door

 Close_door

 Press_button
Open_door

Timer_expiredPress_button

 Open_door

Open_door

Interrupted

Door Open Door Closed Cooking

Complete

Entry//

turn off light
de-energize power tube

clear timer

Entry//
turn on light

  energize power tube
set timer for 1 minute

Entry//
turn off light

Entry//
   turn on light

Entry//
  turn off light
 de-energize power tube
clear timer
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Example: component diagram to 
split up a large system 
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GAP

Descriptive 
models of the 
Ideas/vision 

of the system to 
be realized

Prescriptive 
models to 

develop the 
system even 

through 
automated code 
transformations

GAP
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A question of time

High-level 
architecture

Working 
architecture

Design/Code

Initial phases of a project
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A question of time

High-level 
architecture

Working 
architecture

Design/Code

After a while
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Problems of the high-level architecture

Too many
details
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Problems of the high-level architecture

Easily becomes 
out of date
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Problems of the high-level architecture

Present and Future 
mixed in the same 

document
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Descriptive vs Prescriptive 

Model IntentSubject

Consumer

Descriptive 
Model

is described by Prescriptive 
Model

prescribes
SubjectSubject SubjectSubject

   High-level 
Architecture

is described byIdeas/vision 
of the system 
to be realized

Ideas/vision 
of the system 
to be realized

Working 
Architecture

prescribesSystem to 
be realized
System to 
be realized

The thing that 
the model is 

about

Model created with the 
intent that satisfies a 

particular purpose

Uses the model to 
satisfy/achieve his 

goals
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What next?

Requirements 
Essential use cases
Domain model 
(contracts)

code

real use cases

further modelling
     interaction diagram
     class diagram
     …

Design Analysis



Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 27 -

Classes
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Problem Domain: A Library

Book

ISBN
title
author

Exemplar

* exemplars

1

Lending

startDate
lendingPeriod
actualReturnDate

Customer

name

* lendings

1

runningLending

0..10..1

formerLendings

*0..1

**

waitingCustomers

{ordered}
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Class Diagram

Lending

startDate
lendingPeriod
actualReturnDate

Customer

name

* lendings

1

runningLending

0..1

formerLendings

*

*

waitingCustomers

{ordered}

ReturnController

0..1
0..1

*
remainingLendings

finishedLendings
*

identCustomer(String)
            :Lending[*]
returnBook(Lending)
finishReturn()

treatedCustomer

fee:Real

ReturnDialog

pressedOk()
pressedCancel()
selectedBook(Lending)

Button
ok1cancel 1

LendingList

1

1

*

   Observer
<<interface>>

update(Observable o)

Observable
notifyObservers()

*

Label

1feeLabel
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Obtaining operations

p2:Point

p1:Point

: Linemove(p3)
move(p3)

move(p3)

2
Line

move(dist:Point):void

Point
x:double
y:double

 move(dist:Point):void

1

Line

Point
X:double
Y:double

1 2
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Mapping to code
• One can map a UML class to many different code skeletons in 

different programming languages such as:

Point
x:double
y:double

 move(dist:Point):void

Java

C#

C++
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UML Classes: Visibility

Point
- x:double
- y:double

 + move(dist:Point):void

Mapping visibility to java:
• - ->  private 
• #  ->  protected 
• +   ->  public 
• ~   ->  package

(In this case the semantics of -,#,+,~ will be the ones
of Java.)
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UML attribute

UML:
    [visibility] name [multiplicity] [:type] [= initial value] 

[{properties}]

Properties could be:
– changeable (Variable may be changed.)
– addOnly (When multiplicity is bigger than one you can add more 

values, but not change or remove values.)
– frozen (Cannot be changed after it has been initialized.) 

• Example:
– x : int {frozen} 
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Operations/methods

UML:
     [visibility] name [(parameter list)] [: return type] [{properties}]

You can have zero or more parameters. Syntax for 
parameters:

      [direction] name : type [= default value]         
– direction: in, out, inout

• Example of a property
– isQuery (no ”side effects”)
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Relations

• All the associations we consider when drawing 
domain models can also be used in class 
diagrams.

• But there are some interesting issues to 
consider …
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Navigability

PointLine 1 2

Line knows Point,
but Point doesn’t know
Line.
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Association constraint

Constraint:
• changeable (Links may be changed.)
• addOnly (New links can be added by an object on the opposite 

side of the association.)
• frozen (When new links have been added from an object on the 

opposite side of the association, they cannot be changed.) 
• ordered  (Has a certain order)
• bag  (multisets instead of sets)
• …

CompanyPerson
{ordered}
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Class methods and class variables

Account

-interestRate:double
-balance:double

 +changeInterestRate(newinterestrate:double)
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Person Company* 1
employees employer

works for

Association names UML

Association name, Verb phrase

Role name,
Noun phrase

UML:

Person works for company
Can be read only one way
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Class templates

Stack

+ empty():Boolean{isQuery}
+ push(e:T):Void
+ pop():T

- n: int
- s : T[size]

T
size:int

PersonStack

<<bind>>(Customer,10)

Stack<Person,10>
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Interfaces
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Interfaces

• Interfaces are very important. By using an 
interface you can separate implementation 
from specification.

• An interface specifies a service of a class or 
component.  
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Interfaces in UML

  <<interface>>
     AudioPlayer
play()
stop()
pause()
skipForward()
skipBackwards()

interface 

DiscPlayer

realization

MultiMedia

dependency
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The same interface

Here TapePlayer is a new implementation of AudioPlayer. If you have
done everything correctly you only have to change the implementation
of the methods in the interface, the rest of the program remains the
same.
The MultiMedia doesn’t need to be changed!

TapePlayer

MultiMedia

  <<interface>>
     AudioPlayer
play()
stop()
pause()
skipForward()
skipBackwards()
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Dependency

DiscPlayer

MultiMedia

dependency

The class MultiMedia uses the methods in the interface,
which is implemented by DiscPlayer.

DiscPlayer
AudioPlayer

MultiMedia

dependency

realization   <<interface>>
     AudioPlayer
play()
stop()
pause()
skipForward()
skipBackwards()
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Interface Specifiers
  <<interface>>
     IEmployer

getCompensation()
getBenefits()

Person Company- employer:IEmployer
1..* 1

A person can have many other roles, such as customer, boss, father,
pilot etc.

Roles can be shown using interfaces.

Person - supervisor:IManager

- worker:IEmployee
1*

- employees
works for
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Inheritance
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Example: Dwelling-house

DwellingHouse

#additionalInsulation:boolean

+ insulate()

super class

sub class

Inheritance

House
#length:double
#width:double
#numberOfFloors:int
#lastRenovation:int

+ area():double

# :   visible with class and 
       in subclasses
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Instances

Sometimes you want to work with instances of House 
and sometimes with instances of DwellingHouse etc. 

length = 20
width = 15
numberOfFloors = 2

:House

length = 30
width = 20
numberOfFloors = 3
additionalInsulation = true

:DwellingHouse
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leaf: stops inheritance
public final class A {

       …
}

Note that also a method can be final. Then the method must not be 
changed in the sub classes, e.g.

public final int test (int x) {
    …

}

   A
{leaf}

B
Not allowed!
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Multiple inheritance

• This is allowed in C++, but not in Java.
   (But: For interfaces in Java multiple inheritance 

is allowed)

PrivateCar MotorBoat

AmphibiousCar
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UML: Package 
• In  UML, one can use packages to group elements, for example 

group use cases, classes, components etc.

 

 

 
 

Game rules 
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Name conflicts 

• One can resolve name conflicts with packages, 
for example:

• p1::Queue and p2::Queue are two different 
classes with the same name.

Queue

p1

Queue

p2
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Package Diagram

Order Capture
Applicaton

Orders Customer

<<global>>
Common

+ Money
+ Date

Database
Interface
{abstract}

Oracle
Interface

Sybase
Interface

Domain

Order Capture
Application
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A hierarchy of packages

Orders Customer

Domain
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Tools

In tools one usually does not visualise the contents of 
a package, rather one has a link to a file showing the 
contents.  

HelloWorld

applet

Not UML
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Combining architectural patterns:
Layers and Call-Return Systems 

Presentation

Domain

Service

Swing

Sales

Register Sale

ProcessSaleFrame

Persitence

DBFacade
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Packages
• Currently, can contain

– Package

– Activity, Communication, Sequence, Use Case
– Component, Interface, Data Type

• Currently, transparent
– No namespace

– No limitation on visibility

• Future, per UML
– Namespace

– Visibility controls
– Separate diagram and package concepts
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Components
• There are many definitions for “component”, but  

Clements Szyperski probably gives the most well-
known:
– A software component is a unit of composition with 

contractually specified and explicit context dependencies only. 
A software component can be deployed independently and is 
subject to composition by third parties.
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UML 2.0 Component Definition
•  A modular part of a system design that hides its implementation 

behind a set of external interfaces

•  Within a system, components satisfying the same set of 
interfaces may be substituted freely
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Components and substitution
•  A component may be:

–  Behavioral system level component
–  Implementation component

–  Test stub
–  External code

–  Others…
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Interfaces

• Separate implementation from specification.
• An interface specifies a service of a classifier 

such as a class, component or subsystem.  



Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 63 -

Interface Specifies
• Operation

– Realizing classifier must have an operation with the same signature and 
semantics.

• Attribute
– Realizing classifier must have public operations to set and get the values of 

the attribute

• Association
– Realizing classifier must have an association to the target classifier.

• …
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Interfaces in UML

  <<interface>>
     AudioPlayer
play()
stop()
pause()
skipForward()
skipBackwards()

interface 

DiscPlayer

realization

MultiMedia

dependency
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UML Components

<<component>>
#1

Provider interface

Require interface
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Components 

<<component>>
#3

<<component>>
#2

<<component>>
#4

<<component>>
#1
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Application

<<component>>
#1

<<component>>
#2

<<component>>
#4

<<component>>
#3
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Reuse of Components

<<component>>
#1

<<component>>
#2

<<component>>
#4

<<component>>
#3

<<component>>
#5

<<component>>
#2

<<component>>
#7

<<component>>
#6

Applications 2

Application 1

<<component>>
#2
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Change a Component

<<component>>
#1

<<component>>
#2

<<component>>
#4

<<component>>
#3

Application 1

New
<<component>>

#4

New
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Components
• Parnas’s laws:

– Only what is hidden can be changed without risk.
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Different Development Process

Requirements

Specification

Design

Implementation

Test

Test

Adapt

Deploy

Find & Select
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Port
• Semantically cohesive set of provided and required interfaces.

<<component>>

booking
Port name

port

<<component>>

booking:Booking

Type
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Getting Started
• Divide and conquer

– Any boundary
– Hierarchically nesting

• Define interfaces
– Operations and signals

• Connect components
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Test stub

1      2      3      4

System spec Implementation Test stub
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Part of the Hotel System

<subsystem>>
Bank

<subsystem>>
Hotel

Booking
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Challenge

• Who owns the components? 
• Can one trust components?
• Hard to make general programs
• Few programming languages support components
• Hard to find good interfaces
• Can be hard to combine
• Performance

– …

– Active research area! OCL can be important for making the 
contracts of the interfaces.
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Deployment model

WindowsPCIBM AS/400
* *

<<device>> <<device>>

Lise:WindowsPCServer:IBM AS/400
<<device>> <<device>>

Lars:WindowsPC

<<device>>

<<LAN>>

<<LAN>>

Instance:
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Real world

Lise:WindowsPCServer:IBM AS/400
<<device>> <<device>>

Lars:WindowsPC

<<device>>

<<LAN>>

<<LAN>>
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Example components

GameEngine

PlayerInterface

<<rmi>>
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Artifact

GameEngine

PlayerInterface

FourInRowGameEngine.jar

PlayerInterface.jar

<<manifest>>

<<manifest>>

<<artifact>>

<<artifact>>

<<component>>

<<component>>



Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 81 -

FourInRowGameEngine.jar

FourInRowGameEngine.jar

<<artifact>>

<<artifact>>
GameManager.class

<<artifact>>
Human.class

<<artifact>>
Computer.class

<<artifact>>
META_INF
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Deployment

Lise:WindowsPC

Server:IBM AS/400

<<device>>

<<device>>

Lars:WindowsPC

<<device>>

<<LAN>>

<<LAN>>

FourInRowGame
Engine.jar

<<artifact>>

PlayerInterface.jar

<<artifact>>

PlayerInterface.jar

<<artifact>>

<<rmi>>

<<rmi>>
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Artifacts

• Artifacts are deployed on nodes. Some 
examples of artifacts are:
– Scripts

– Source files

– Database tables

– Documents

– Components 
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Patterns for splitting up the work 
on hardware

• The centralised pattern

• The distributed pattern

• The decentralised pattern 
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The centralised pattern

User interface

System-
interface

:Client

User-
interface

System-
interface

:Server

Function

Model

More
clients
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The distributed pattern

User-interface

System-
interface

:Client

Function

Model

System-
interface

:Server

More
clients
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The decentralised pattern

User-interface
System-
interface

:Client

Function

Model

User-interface
System-
interface

:Server

Function

Model
(shared)

More 
clients
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