
Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 1 -

Lecture 5
Classes, Components, and Nodes

Rogardt Heldal

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 2 -

Architecture: three facts
• Every application has an architecture

 The architecture of a system can be characterized by
the principal design decisions made during its
development

• Every application has at least one architect
 Perhaps not known or recognized by that title

• Architecture is not a phase of development
 Where did the software architecture come from?
 How does it change over time?

Taylor, R. N., Medvidovic, N., and Dashofy, E. M. 2009 Software Taylor, R. N., Medvidovic, N., and Dashofy, E. M. 2009 Software
Architecture: Foundations, Theory, and Practice. Wiley Architecture: Foundations, Theory, and Practice. Wiley

Publishing.Publishing.

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 3 -

Challenge

• The actual architecture of a system is not always exactly
the one conceived by the architects
 The architecture is also emerging during development (bottom-up)
 Some architectural decisions are made unconsciously

• Which decisions have an impact on the architecture? –not easy

 Some “actual” architects do not have the title of architect

High-level
architecture

 Ideas/vision
of the system to be

realized

Working architecture

Actual blueprint for the
implementation teams,

used in their daily
work

GAP

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 4 -

Problem to be solved

Descriptive
models of the
Ideas/vision

of the system to
be realized

Prescriptive
models to

develop the
system even

through
automated code
transformations

GAP

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 5 -

Analysis
• So far we have done:

– Requirements
– Domain Models
– Use Cases

• These models are based on:
– Interviews
– Observations

– Workshops
– Looking at similar systems

Generate domain
knowledge

Comments: without a good analysis, one cannot obtain
 a good system.

Descriptive
models of the
Ideas/vision
of the system
to be realized

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 6 -

Problem to be solved

Descriptive
models of the
Ideas/vision

of the system to
be realized

Prescriptive
models to

develop the
system even

through
automated code
transformations

GAP

Need creativity

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 7 -

Example

Domain model to class diagram

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 8 -

Problem Domain: A Library

Book

ISBN
title
author

Exemplar

* exemplars

1

Lending

startDate
lendingPeriod
actualReturnDate

Customer

name

* lendings

1

runningLending

0..10..1

formerLendings

*0..1

**

waitingCustomers

{ordered}

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 9 -

Class Diagram

Lending

startDate
lendingPeriod
actualReturnDate

Customer

name

* lendings

1

runningLending

0..1

formerLendings

*

*

waitingCustomers

{ordered}

ReturnController

0..1
0..1

*
remainingLendings

finishedLendings
*

identCustomer(String)
 :Lending[*]
returnBook(Lending)
finishReturn()

treatedCustomer

fee:Real

ReturnDialog

pressedOk()
pressedCancel()
selectedBook(Lending)

Button
ok1cancel 1

LendingList

1

1

*

 Observer
<<interface>>

update(Observable o)

Observable
notifyObservers()

*

Label

1feeLabel

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 10 -

Reflection
• Both use the syntax of class diagram
• But, different:

– Subject
– Consumer
– Intent

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 11 -

Models

Model IntentSubject

Consumer

The thing
that the
model is

about

Model created with
the intent that satisfies

a particular purpose

Uses the model to
satisfy/achieve his

goals

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 12 -

Gap between analysis and design

Analysis

Design

A lot of
creativity
to produce
the analysis But also a lot of

creativity to
produce design
from the analysis

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 13 -

Analysis
• So far we have done:

– Requirements

– Domain Models
– Use Cases

• These models are based on:
– Interviews
– Observations
– Workshops
– Looking at similar systems

Generate domain
knowledge

Can other types of models be part of the analysis phase?

Descriptive
models of the
Ideas/vision
of the system
to be realized

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 14 -

Descriptive vs Prescriptive

Model IntentSubject

Consumer

Descriptive
Model

is described by Prescriptive
Model

prescribes
SubjectSubject SubjectSubject

 High-level
Architecture

is described byIdeas/vision
of the system
to be realized

Ideas/vision
of the system
to be realized

Working
Architecture

prescribesSystem to
be realized
System to
be realized

The thing that
the model is

about

Model created with the
intent that satisfies a

particular purpose

Uses the model to
satisfy/achieve his

goals

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 15 -

Complex system

• Might need other types of diagram in the
analysis phase:
– Components

– Nodes

– State machines

– …

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 16 -

Example: show the ECUs in a car

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 17 -

Example: State machine to explain
the behavior of an oven

Close_door

 Close_door

 Press_button
Open_door

Timer_expiredPress_button

 Open_door

Open_door

Interrupted

Door Open Door Closed Cooking

Complete

Entry//

turn off light
de-energize power tube

clear timer

Entry//
turn on light

 energize power tube
set timer for 1 minute

Entry//
turn off light

Entry//
 turn on light

Entry//
 turn off light
 de-energize power tube
clear timer

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 18 -

Example: component diagram to
split up a large system

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 19 -

GAP

Descriptive
models of the
Ideas/vision

of the system to
be realized

Prescriptive
models to

develop the
system even

through
automated code
transformations

GAP

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 20 -

A question of time

High-level
architecture

Working
architecture

Design/Code

Initial phases of a project

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 21 -

A question of time

High-level
architecture

Working
architecture

Design/Code

After a while

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 22 -

Problems of the high-level architecture

Too many
details

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 23 -

Problems of the high-level architecture

Easily becomes
out of date

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 24 -

Problems of the high-level architecture

Present and Future
mixed in the same

document

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 25 -

Descriptive vs Prescriptive

Model IntentSubject

Consumer

Descriptive
Model

is described by Prescriptive
Model

prescribes
SubjectSubject SubjectSubject

 High-level
Architecture

is described byIdeas/vision
of the system
to be realized

Ideas/vision
of the system
to be realized

Working
Architecture

prescribesSystem to
be realized
System to
be realized

The thing that
the model is

about

Model created with the
intent that satisfies a

particular purpose

Uses the model to
satisfy/achieve his

goals

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 26 -

What next?

Requirements
Essential use cases
Domain model
(contracts)

code

real use cases

further modelling
 interaction diagram
 class diagram
 …

Design Analysis

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 27 -

Classes

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 28 -

Problem Domain: A Library

Book

ISBN
title
author

Exemplar

* exemplars

1

Lending

startDate
lendingPeriod
actualReturnDate

Customer

name

* lendings

1

runningLending

0..10..1

formerLendings

*0..1

**

waitingCustomers

{ordered}

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 29 -

Class Diagram

Lending

startDate
lendingPeriod
actualReturnDate

Customer

name

* lendings

1

runningLending

0..1

formerLendings

*

*

waitingCustomers

{ordered}

ReturnController

0..1
0..1

*
remainingLendings

finishedLendings
*

identCustomer(String)
 :Lending[*]
returnBook(Lending)
finishReturn()

treatedCustomer

fee:Real

ReturnDialog

pressedOk()
pressedCancel()
selectedBook(Lending)

Button
ok1cancel 1

LendingList

1

1

*

 Observer
<<interface>>

update(Observable o)

Observable
notifyObservers()

*

Label

1feeLabel

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 30 -

Obtaining operations

p2:Point

p1:Point

: Linemove(p3)
move(p3)

move(p3)

2
Line

move(dist:Point):void

Point
x:double
y:double

 move(dist:Point):void

1

Line

Point
X:double
Y:double

1 2

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 31 -

Mapping to code
• One can map a UML class to many different code skeletons in

different programming languages such as:

Point
x:double
y:double

 move(dist:Point):void

Java

C#

C++

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 32 -

UML Classes: Visibility

Point
- x:double
- y:double

 + move(dist:Point):void

Mapping visibility to java:
• - -> private
• # -> protected
• + -> public
• ~ -> package

(In this case the semantics of -,#,+,~ will be the ones
of Java.)

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 33 -

UML attribute

UML:
 [visibility] name [multiplicity] [:type] [= initial value]

[{properties}]

Properties could be:
– changeable (Variable may be changed.)
– addOnly (When multiplicity is bigger than one you can add more

values, but not change or remove values.)
– frozen (Cannot be changed after it has been initialized.)

• Example:
– x : int {frozen}

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 34 -

Operations/methods

UML:
 [visibility] name [(parameter list)] [: return type] [{properties}]

You can have zero or more parameters. Syntax for
parameters:

 [direction] name : type [= default value]
– direction: in, out, inout

• Example of a property
– isQuery (no ”side effects”)

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 35 -

Relations

• All the associations we consider when drawing
domain models can also be used in class
diagrams.

• But there are some interesting issues to
consider …

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 36 -

Navigability

PointLine 1 2

Line knows Point,
but Point doesn’t know
Line.

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 37 -

Association constraint

Constraint:
• changeable (Links may be changed.)
• addOnly (New links can be added by an object on the opposite

side of the association.)
• frozen (When new links have been added from an object on the

opposite side of the association, they cannot be changed.)
• ordered (Has a certain order)
• bag (multisets instead of sets)
• …

CompanyPerson
{ordered}

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 38 -

Class methods and class variables

Account

-interestRate:double
-balance:double

 +changeInterestRate(newinterestrate:double)

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 39 -

Person Company* 1
employees employer

works for

Association names UML

Association name, Verb phrase

Role name,
Noun phrase

UML:

Person works for company
Can be read only one way

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 40 -

Class templates

Stack

+ empty():Boolean{isQuery}
+ push(e:T):Void
+ pop():T

- n: int
- s : T[size]

T
size:int

PersonStack

<<bind>>(Customer,10)

Stack<Person,10>

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 41 -

Interfaces

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 42 -

Interfaces

• Interfaces are very important. By using an
interface you can separate implementation
from specification.

• An interface specifies a service of a class or
component.

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 43 -

Interfaces in UML

 <<interface>>
 AudioPlayer
play()
stop()
pause()
skipForward()
skipBackwards()

interface

DiscPlayer

realization

MultiMedia

dependency

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 44 -

The same interface

Here TapePlayer is a new implementation of AudioPlayer. If you have
done everything correctly you only have to change the implementation
of the methods in the interface, the rest of the program remains the
same.
The MultiMedia doesn’t need to be changed!

TapePlayer

MultiMedia

 <<interface>>
 AudioPlayer
play()
stop()
pause()
skipForward()
skipBackwards()

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 45 -

Dependency

DiscPlayer

MultiMedia

dependency

The class MultiMedia uses the methods in the interface,
which is implemented by DiscPlayer.

DiscPlayer
AudioPlayer

MultiMedia

dependency

realization <<interface>>
 AudioPlayer
play()
stop()
pause()
skipForward()
skipBackwards()

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 46 -

Interface Specifiers
 <<interface>>
 IEmployer

getCompensation()
getBenefits()

Person Company- employer:IEmployer
1..* 1

A person can have many other roles, such as customer, boss, father,
pilot etc.

Roles can be shown using interfaces.

Person - supervisor:IManager

- worker:IEmployee
1*

- employees
works for

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 47 -

Inheritance

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 48 -

Example: Dwelling-house

DwellingHouse

#additionalInsulation:boolean

+ insulate()

super class

sub class

Inheritance

House
#length:double
#width:double
#numberOfFloors:int
#lastRenovation:int

+ area():double

: visible with class and
 in subclasses

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 49 -

Instances

Sometimes you want to work with instances of House
and sometimes with instances of DwellingHouse etc.

length = 20
width = 15
numberOfFloors = 2

:House

length = 30
width = 20
numberOfFloors = 3
additionalInsulation = true

:DwellingHouse

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 50 -

leaf: stops inheritance
public final class A {

 …
}

Note that also a method can be final. Then the method must not be
changed in the sub classes, e.g.

public final int test (int x) {
 …

}

 A
{leaf}

B
Not allowed!

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 51 -

Multiple inheritance

• This is allowed in C++, but not in Java.
 (But: For interfaces in Java multiple inheritance

is allowed)

PrivateCar MotorBoat

AmphibiousCar

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 52 -

UML: Package
• In UML, one can use packages to group elements, for example

group use cases, classes, components etc.

Game rules

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 53 -

Name conflicts

• One can resolve name conflicts with packages,
for example:

• p1::Queue and p2::Queue are two different
classes with the same name.

Queue

p1

Queue

p2

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 54 -

Package Diagram

Order Capture
Applicaton

Orders Customer

<<global>>
Common

+ Money
+ Date

Database
Interface
{abstract}

Oracle
Interface

Sybase
Interface

Domain

Order Capture
Application

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 55 -

A hierarchy of packages

Orders Customer

Domain

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 56 -

Tools

In tools one usually does not visualise the contents of
a package, rather one has a link to a file showing the
contents.

HelloWorld

applet

Not UML

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 57 -

Combining architectural patterns:
Layers and Call-Return Systems

Presentation

Domain

Service

Swing

Sales

Register Sale

ProcessSaleFrame

Persitence

DBFacade

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 58 -

Packages
• Currently, can contain

– Package

– Activity, Communication, Sequence, Use Case
– Component, Interface, Data Type

• Currently, transparent
– No namespace

– No limitation on visibility

• Future, per UML
– Namespace

– Visibility controls
– Separate diagram and package concepts

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 59 -

Components
• There are many definitions for “component”, but

Clements Szyperski probably gives the most well-
known:
– A software component is a unit of composition with

contractually specified and explicit context dependencies only.
A software component can be deployed independently and is
subject to composition by third parties.

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 60 -

UML 2.0 Component Definition
• A modular part of a system design that hides its implementation

behind a set of external interfaces

• Within a system, components satisfying the same set of
interfaces may be substituted freely

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 61 -

Components and substitution
• A component may be:

– Behavioral system level component
– Implementation component

– Test stub
– External code

– Others…

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 62 -

Interfaces

• Separate implementation from specification.
• An interface specifies a service of a classifier

such as a class, component or subsystem.

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 63 -

Interface Specifies
• Operation

– Realizing classifier must have an operation with the same signature and
semantics.

• Attribute
– Realizing classifier must have public operations to set and get the values of

the attribute

• Association
– Realizing classifier must have an association to the target classifier.

• …

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 64 -

Interfaces in UML

 <<interface>>
 AudioPlayer
play()
stop()
pause()
skipForward()
skipBackwards()

interface

DiscPlayer

realization

MultiMedia

dependency

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 65 -

UML Components

<<component>>
#1

Provider interface

Require interface

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 66 -

Components

<<component>>
#3

<<component>>
#2

<<component>>
#4

<<component>>
#1

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 67 -

Application

<<component>>
#1

<<component>>
#2

<<component>>
#4

<<component>>
#3

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 68 -

Reuse of Components

<<component>>
#1

<<component>>
#2

<<component>>
#4

<<component>>
#3

<<component>>
#5

<<component>>
#2

<<component>>
#7

<<component>>
#6

Applications 2

Application 1

<<component>>
#2

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 69 -

Change a Component

<<component>>
#1

<<component>>
#2

<<component>>
#4

<<component>>
#3

Application 1

New
<<component>>

#4

New

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 70 -

Components
• Parnas’s laws:

– Only what is hidden can be changed without risk.

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 71 -

Different Development Process

Requirements

Specification

Design

Implementation

Test

Test

Adapt

Deploy

Find & Select

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 72 -

Port
• Semantically cohesive set of provided and required interfaces.

<<component>>

booking
Port name

port

<<component>>

booking:Booking

Type

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 73 -

Getting Started
• Divide and conquer

– Any boundary
– Hierarchically nesting

• Define interfaces
– Operations and signals

• Connect components

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 74 -

Test stub

1 2 3 4

System spec Implementation Test stub

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 75 -

Part of the Hotel System

<subsystem>>
Bank

<subsystem>>
Hotel

Booking

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 76 -

Challenge

• Who owns the components?
• Can one trust components?
• Hard to make general programs
• Few programming languages support components
• Hard to find good interfaces
• Can be hard to combine
• Performance

– …

– Active research area! OCL can be important for making the
contracts of the interfaces.

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 77 -

Deployment model

WindowsPCIBM AS/400
* *

<<device>> <<device>>

Lise:WindowsPCServer:IBM AS/400
<<device>> <<device>>

Lars:WindowsPC

<<device>>

<<LAN>>

<<LAN>>

Instance:

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 78 -

Real world

Lise:WindowsPCServer:IBM AS/400
<<device>> <<device>>

Lars:WindowsPC

<<device>>

<<LAN>>

<<LAN>>

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 79 -

Example components

GameEngine

PlayerInterface

<<rmi>>

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 80 -

Artifact

GameEngine

PlayerInterface

FourInRowGameEngine.jar

PlayerInterface.jar

<<manifest>>

<<manifest>>

<<artifact>>

<<artifact>>

<<component>>

<<component>>

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 81 -

FourInRowGameEngine.jar

FourInRowGameEngine.jar

<<artifact>>

<<artifact>>
GameManager.class

<<artifact>>
Human.class

<<artifact>>
Computer.class

<<artifact>>
META_INF

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 82 -

Deployment

Lise:WindowsPC

Server:IBM AS/400

<<device>>

<<device>>

Lars:WindowsPC

<<device>>

<<LAN>>

<<LAN>>

FourInRowGame
Engine.jar

<<artifact>>

PlayerInterface.jar

<<artifact>>

PlayerInterface.jar

<<artifact>>

<<rmi>>

<<rmi>>

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 83 -

Artifacts

• Artifacts are deployed on nodes. Some
examples of artifacts are:
– Scripts

– Source files

– Database tables

– Documents

– Components

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 84 -

Patterns for splitting up the work
on hardware

• The centralised pattern

• The distributed pattern

• The decentralised pattern

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 85 -

The centralised pattern

User interface

System-
interface

:Client

User-
interface

System-
interface

:Server

Function

Model

More
clients

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 86 -

The distributed pattern

User-interface

System-
interface

:Client

Function

Model

System-
interface

:Server

More
clients

Datavetenskap

Rogardt Heldal Classes, Objects, and Relations - 87 -

The decentralised pattern

User-interface
System-
interface

:Client

Function

Model

User-interface
System-
interface

:Server

Function

Model
(shared)

More
clients

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87

