
SAMPLE EXAM

Testing, Debugging, and Verification

TDA567/DIT082

Extra aid: Only dictionaries may be used. Other aids are not allowed!

Grade intervals: U: 0 – 23p, 3: 24 – 35p, 4: 36 – 47p, 5: 48 – 60p,
G: 24 – 47p, VG: 48 – 60p, Max. 60p.

Please observe the following:

• This exam has 18 numbered pages.
Please check immediately that your copy is complete

• Answers must be given in English
• Use page numbering on your pages
• Start every assignment on a fresh page
• Write clearly; unreadable = wrong!
• Fewer points are given for unnecessarily complicated solutions
• Indicate clearly when you make assumptions that are not given in the assignment

Good luck!

1

Exam/Tenta TDA567/DIT082 3

Assignment 1 (Testing) (12p)

(a) Briefly describe the main features of the Extreme Testing methodology. Also
list three of its main advantages.

(b) Construct a minimal set of test-cases for the code snippet below, which satisfy
condition coverage

if (a > b || b < 0)

return a;

else

return b;

(c) We discussed another two criteria for logic coverage in class. Describe these.
Also describe the relationship between the three logic based criteria. Does your
test-set from (b) satisfy any of the other coverage criteria. Why/why not?

Solution
[5p, 2p, 5p]

(a) Extreme testing is a development methodology where test-cases must be developed
before the code is written. These tests must be re-run after every incremental code
change.

Advantages: (3 marks for three sensible advantages, e.g. something like the below. No
extra marks for more than 3. If more than 3 included and something is totally wrong,
there might be penalties.)

• Clear idea of what program should do before starting coding. Test-cases provide
a specification for the program.

• Facilitates regression testing / integrates regression testing in development pro-
cess.

• May start with simple design and incrementally optimise later, without risking
breaking the specification. Therefore may have rapid development process.

(b)
Need two test-cases, for instance
{a --> 2, b --> -1} and {a --> 2, b --> 3}
(c)
This question checks if they have understood the logic based criteria. Full marks only
if they give a satisfactory explanation to whether their answer to (b) satisfy any of
the other criteria (mine above does not, as in both cases the decision comes out true).
In addition, they should also give the following definitions of decision coverage and
MCDC:

Exam/Tenta TDA567/DIT082 4

Decision Coverage (DC) For a given decision d, DC is satisfied by a test suite TS if
it contains at least two tests, one where d evaluates to false, and one where d evaluates
to true. For a given program p, DC is satisfied by TS if it satisfies DC for all d ∈ D(p).

Modified Condition Decision Coverage (MCDC) For a given condition c in deci-
sion d, MCDC is satisfied by a test suite TS if it contains at least two tests, one where
c evaluates to false, one where c evaluates to true, d evaluates differently in both, and
the other conditions in d evaluate identically in both. For a given program p, MCDC
is satisfied by TS if it satisfies MCDC for all c ∈ C(p).

• DC and CC are orthogonal (i.e. neither subsume the other)

• MCDC subsumes DC and CC.

Exam/Tenta TDA567/DIT082 5

Assignment 2 (Debugging) (11p)

(a) When is a statement B control dependent on a statement A?

(b) In the below small Dafny program, on which statement(s) is/are the statements
in line 9 data dependent?

1 method M(n : nat) returns (b : nat){

2 if(n == 0)

3 { return 0; }

4 var i := 1;

5 var a := 0;

6 b := 1;

7 while (i < n)

8 {

9 a, b := b, a+b;

11 i := i +1;

12 }

13 }

(c) On which statements is line 11 backward dependent?

(d) The ddMin algorithm computes a minimal failure inducing input sequence. It
relies on having a method test(i) which returns PASS if the input i passes
the test or FAIL if the i causes failure (i.e. bug is exhibited).
Suppose our input consists of representations of DNA sequences, made out
out the letters G,A,T,C which represent the nucleotides. Let test return FAIL

whenever the DNA sequence contains two consecutive occurrences of the letter
C somewhere in the sequence.
Simulate a run of the ddMin algorithm and compute a minimal failing input
from an initial failing input [G,T,A,C,C,A,G,C]. Clearly state what happens
at each step of the algorithm and what the final result is. Correct solutions
without explanation will not be given the full score.

Solution
[1p, 2p, 2p, 6p]

(a)
B is control dependent on A, if B’s execution is potentially controlled by A.

(b)
Line 9 is data-dependent on lines 5 and 6 as well as itself, as it may reads the values of
the previous iteration. 1 mark for lines 5 and 6, 2 marks if they also have line 9 in the
answer.

(c)
Line 11 is backward dependent on lines 4 and 7 for the first iteration of the loop. On
repeated iterations of the loop, it is backward dependent on lines 7 and on itself.

Exam/Tenta TDA567/DIT082 6

(d)
Start with granularity n = 2 and sequence [G,T,A,C,C,A,G,C].

The number of chunks is 2
==> n : 2, [C, A, G, C] PASS (take away first chunk)
==> n : 2, [G, T, A, C] PASS (take away second chunk)

Increase number of chunks to min(n ∗ 2, len([G, T, A, C, C, A, G, C])) = 4
==> n : 4, [A, C, C, A, G, C] FAIL (take away first chunk)

Adjust number of chunks to max(n− 1, 2) = 3
==> n : 3, [C, A, G, C] PASS (take away first chunk)
==> n : 3, [A, C, G, C] PASS (take away second chunk)
==> n : 3, [A, C, C, A] FAIL (take away third chunk)

Adjust number of chunks to max(n− 1, 2) = 2
==> n : 2, [C, A] PASS (take away first chunk)
==> n : 2, [A, C] PASS (take away first chunk)

Increase number of chunks to min(n ∗ 2, len([A, C, C, A]) = 4
==> n : 4, [C, C, A] FAIL (take away first chunk)

Adjust number of chunks to max(n− 1, 2) = 3
==> n : 3, [C, A] PASS (take away first chunk)
==> n : 3, [C, A] PASS (take away second chunk)
==> n : 3, [C, C] FAIL (take away third chunk)

Adjust number of chunks to max(n− 1, 2) = 2
==> n : 2, [C] PASS (take away first chunk)
==> n : 2, [C] PASS (take away second chunk)

As n == len([C, C]) the algorithm terminates with minimal failing input [C, C]

Exam/Tenta TDA567/DIT082 7

Assignment 3 (Formal Specification) (15p)

For this question, we will consider a part of a program for an autonomous robot moving
around exploring a cave where there are both treasures and hungry monsters which will
eat any human (but it won’t eat robots of course). The robot’s job is to completely
map the cave before the humans move in to collect the treasures, so they can avoid any
rooms with monsters.

The environment in which the robot moves around is represented by a matrix of integer
values between 0-3 where these values indicate the following possible statuses of each
location:

0: The location is not yet visited.

1: The location has been visited.

2: The location has been visited and sensory data indicate that there is a treasure here!

3: The location has been visited and sensory data indicate that there is a a hungry
monster here!

The robot moves around one step at the time, until it has explored the whole world.
When the whole cave system is explored, the robot teleports back to its starting po-
sition. Teleportation requires a lot of power, so the robot can only do it once, then
it has to recharge, so it is important that this only happens once it has finished its
exploration task.

The robot has an internal model of the cave system, represented by the Dafny class
Q3 below. To declare a matrix in Dafny, we use the type array2, which represents a
two dimensional array. To access the width and height of a two dimensional array a in
Dafny we use a.Length0 and a.Length1 respectively. To access an element in a two
dimensional array, we write a[i,j].

Continued on next page!

Exam/Tenta TDA567/DIT082 8

class Q3 {

var world : array2<int>; // The robots internal map of the cave system

var x : int, y : int; // Current x,y co-ordinates

// Holds if this object is valid: i.e. x,y co-ordinates are

// in scope and the world map contains only allowed values.

predicate Valid()

reads this;

{ }

// Holds if location (x1,y1) is a valid location in this world.

predicate AllowedLoc(x1 : int, y1 :int)

reads this;

{ }

// Holds if the whole world is explored.

predicate CompletelyExplored()

reads this;

{ }

method Init(w : int, h : int)

{

world := new int[w,h];

forall(i,j | 0 <= i < w && 0 <= j < h)

{ world[i,j] := 0; } // nothing visited.

x,y := 0,0; // start location

world[0,0] := 1; // start location is visited.

}

// Robot reading its sensors and updating current location accordingly.

//Input==1 means current location is empty

//Input==2 means there is a treasure here!

//Input==3 menas there is a monster here!

method ProcessSensorReading(input: int)

{ }

// Robot moves one step south (i.e it decreases its y-coordiante by 1),

// provided that is possible.

// If the new location has not been visited before, the robot should update it

// and set its status as "visited" (i.e to 1).

// If the new location has been visited, its status should remain the same.

method MoveSouth()

{ }

// Robot teleports back to the starting position (0,0),

// provided that it has finished exploring the cave.

method TeleportHome()

{ }

}

Continued on next page!

Exam/Tenta TDA567/DIT082 9

The robot is very expensive, it is important that the source code is correct. Your task
is to enrich the class Q3 with specifications for the methods predicates.

(a) Complete the specifications and implementations of the three predicates:
Valid(), AllowedLoc(x1,y1) and CompletelyExplored.

(b) Complete the Init() method with a contract specifying its pre and post condi-
tions. In particular, world must be a newly allocated object, and no locations
except (0,0) are not visited. Of course, w and h must have sensible values, and
the object should be initialised accordingly.

(c) Write down specifications and implementations for the methods MoveSouth

(you do not have to consider moving north, east or west, as these methods are
analogous), ProcessSensorReading and TeleportHome. Take into account
the informal specifications written in the comments above.

Solution
[5p, 4p, 6p]

class Q3 {

var world : array2<int>;

var x : int;

var y : int;

predicate Valid()

reads this;

{

world != null &&

0 <= x < world.Length0 &&

0 <= y < world.Length1 &&

forall i,j :: 0 <= i < world.Length0 && 0 <= j < world.Length1 ==>

0 <= world[i,j] <= 3

}

predicate AllowedLoc(x1 : int, y1 :int)

requires Valid();

reads this;

{

0 <= x1 < world.Length0 &&

0 <= y1 < world.Length1

}

predicate CompletelyExplored()

requires Valid();

reads this;

{

forall i,j :: 0 <= i < world.Length0 && 0 <= j < world.Length1 ==>

0 < world[i,j] <= 3

Exam/Tenta TDA567/DIT082 10

}

method Init(w : int, h : int)

modifies this;

requires w > 0 && h > 0;

ensures Valid();

ensures fresh(world);

ensures world.Length0 == w && world.Length1 == h;

ensures x == 0 && y == 0;

// there are many ways of expressing the below...

ensures forall i,j :: 0 <= i < w && 0 <= j < h && !(i==j==0) ==>

world[i,j]==0;

ensures world[0,0] == 1;

//Alt. to the above, might also be others

ensures forall i,j :: 0 <= i < w && 0 <= j < h ==> (i==x && j==y &&

world[i,j] == 1) || world[i,j]==0;

{

world := new int[w,h];

forall(i,j | 0 <= i < w && 0 <= j < h)

{

world[i,j] := 0; //nothing visited.

}

x,y := 0,0; // start location

world[0,0] := 1;

}

method moveSouth()

modifies ‘x, ‘y, world; // also OK: modifies this.

requires Valid() && AllowedLoc(x,y-1);

ensures x== old(x) && y == old(y)-1 && Valid();

ensures old(world[x,y-1]) > 0 ==> world[x,y] == old(world[x,y-1]);

ensures old(world[x,y-1]) == 0 ==> world[x,y] == 1;

{

y := y -1;

if (world[x,y] == 0)

{ world[x,y] := 1;}

}

// Robot reading its sensors.

//Input==1 means current location is empty

//Input==2 means there is a treasure here!

//Input==3 menas there is a monster here!

method ReadSensor(input: int)

modifies world;

Exam/Tenta TDA567/DIT082 11

requires Valid();

requires input ==1 || input == 2 || input == 3;

ensures world[x,y] == input;

{

world[x,y] := input;

}

method TeleportHome()

modifies ‘x, ‘y;

requires Valid();

requires CompletelyExplored();

ensures x==0 && y == 0;

{

x,y := 0,0;

}

}

Exam/Tenta TDA567/DIT082 12

Assignment 4 (Specification and Test Generation) (6p)

method Min(arr : array<int>) returns (min : int)

requires arr !=null && arr.Length > 0;

ensures ?

{

var i := 1;

min := arr[0];

while(i < arr.Length)

{

if(arr[i] < min)

{min := arr[i];}

i := i +1;

}

}

(a) Complete the above Dafny program which is supposed to compute the mini-
mum of an array. Your answer should state suitable postconditions and loop
invariants.

(b) When generating tests from specifications, it is normally required that the
generated test inputs satisfy certain parts of the program specification. Which
parts?

Solution
[5p, 1p]

(a)

method Min(arr : array<int>) returns (min : int)

requires arr !=null && arr.Length > 0;

ensures forall i :: 0 <= i < arr.Length ==> min <= arr[i];

ensures exists i :: 0 <= i < arr.Length && min == arr[i];

{

var i := 1;

min := arr[0];

while(i < arr.Length)

invariant 0 < i <= arr.Length;

invariant forall j :: 0 <= j < i ==> min <= arr[j];

invariant exists j :: 0 <= j < i && min == arr[j];

{

if(arr[i] < min)

{min := arr[i];}

i := i +1;

Exam/Tenta TDA567/DIT082 13

}

}

(b)
The preconditions, here arr !=null && arr.Length > 0

Exam/Tenta TDA567/DIT082 14

Assignment 5 (Verification) (16p)

The next question is about the following little Dafny program which implements a
mathematical ”trick”:

• Think of a number n.

• Double the number.

• If the result is negative, add 6 to the result. Otherwise, add 4 to the result.

• Half the result.

• Subtract the number you were thinking of from the result.

• Your result it either 2 or 3. If you were thinking of a positive number, it is 2, a
negative and it is 3.

In Dafny:

method Trick(n : int) returns (m : int)

ensures n < 0 ==> m == 3;

ensures n >= 0 ==> m == 2;

{

m := n * 2;

if (m >= 0)

{ m := m + 4;}

else

{ m := m + 6;}

m := m / 2;

m := m - n;

}

(a) Prove that the method Trick is correct using the weakest precondition calcu-
lus.

Continued on next page!

Exam/Tenta TDA567/DIT082 15

The rest of this question concerns a program with a loop, which computes xy:

function exp(n : nat, m : nat) : nat

{

if (m==0) then 1 else n * exp(n,m-1)

}

method Exp(x : nat, y : nat) returns (res : nat)

ensures res == exp(x,y);

{

var i := 0;

res := 1;

while(i < y)

{

res := res * x;

i := i+1;

}

}

(b) Give a loop invariant and a loop variant for the loop in the Exp method above.
You may want to use the recursive function provided. Note that the inputs
are of type nat, so they cannot be negative.

(c) Prove the Exp method correct using the weakest precondition calculus.

Solution
[7p, 2p, 7p]

(a)

R: n < 0 ==> m == 3 && n >= 0 ==> m == 2;

Apply a number of Seq-rules:

wp(m := n * 2,

wp(if (m >= 0) . . else . .,

wp(m := m/2,

wp(m:= m-n, R)))))

Apply Assignment

wp(m := n * 2,

wp(if (m >= 0) . . else . .,

wp(m := m/2, n < 0 ==> m-n==3 && n>=0 ==> m-n==2)

Apply Assignment

wp(m := n * 2,

wp(if (m >= 0) . . else . .,

n < 0 ==> m/2-n==3 && n>=0 ==> m/2-n==2)

Exam/Tenta TDA567/DIT082 16

Apply Conditional rule:

wp(m := n * 2,

m >= 0 ==> wp (m:=m+4, n < 0 ==> m/2-n==3 && n>=0 ==> m/2-n==2)

&&

m < 0 ==> wp (m:=m+6, n < 0 ==> m/2-n==3 && n>=0 ==> m/2-n==2)

Apply Assignment to each side:

wp(m := n * 2,

m >= 0 ==> (n < 0 ==> (m+4)/2-n==3 && n>=0 ==> (m+4)/2-n==2)

&&

m < 0 ==> (n < 0 ==> (m+6)/2-n==3 && n>=0 ==> (m+6)/2-n==2)

Apply Assignemnt:

n*2 >= 0 ==> (n < 0 ==> (n*2 + 4)/2-n==3 && n>=0 ==> (n*2 + 4)/2 -n==2)

&&

n*2 < 0 ==> (n < 0 ==> (n*2 + 6)/2-n==3 && n>=0 ==> (n*2 + 6)/2-n==2)

Simplify (first conjunct implies n is positive, second, n is negative)

n*2 >= 0 ==> (false ==> . .) && n>=0 ==> (n*2 + 4)/2 == 2+n)

&&

n*2 < 0 ==> (n < 0 ==> (n*2 + 6)/2 == 3+n && (false ==> . .)

Simplify

n*2 >= 0 ==> true && n>=0 ==> (n+2 == 2+n)

&&

n*2 < 0 ==> n < 0 ==> (n + 3) == 3+n && true

True && True

b)
Invariant: res == exp(x,i) && i <= y

Variant: y-i

c)
We follow the five steps from the lecture notes:

I : res == exp(x,i) && i <= y

V: y-i

R: res == exp(x,y)

S1: i := 0; res := 1;

S: res := res * x; i := i+1;

1) Show that the invariant holds before entry of loop:

wp(S1, I)

Exam/Tenta TDA567/DIT082 17

wp(i:=0; res :=, res == exp(x,i) && i <= y)

Apply seq, then assignment twice

1 == exp(x, 0) && 0 <= y

simplify

1 == 1 && true

2) Show that the loop invariant hold on each iteration.

I && B ==> wp(S, I)

I && (i < y) ==> wp(res := res * x; i := i+1, I)

apply seq, then assignment twice

res == exp(x,i) && i <= y && (i < y) ==> res*x == exp(x, i +1) && i+1

<= y

simplify using: exp(x, i+1) = x * exp(x, i) and i + 1 <= y

implies that i < y

res == exp(x,i) && i <= y && (i < y) ==> res*x == x * exp(x,i) && i <

y

simplify: divide equation by x

res == exp(x,i) && i <= y && (i < y) ==> res == exp(x,i) && i < y

which follows from the invariant

3) Show that the post-condition is implied when the loop exits:

I && !B ==> R

res == exp(x,i) && i <= y && !(i < y) ==> res == exp(x,y)

Neg. loop guard !(i < y) and invariant (i <= y) imply that i==y

res == exp(x,y) ==> res == exp(x,y)

which is trivially true

4) Show that the variant is bounded from below by 0:

I && B ==> V > 0

res == exp(x,i) && i <= y && i < y ==> y-i > 0

As i is less than y, and y is positive (it is a natural number)

then y-1 > 0 is true.

5) Show that the variant decrease at each loop iteration:

I && B ==> wp(V1 := V; S, V < V1)

Apply seq rule.

Exam/Tenta TDA567/DIT082 18

I && B ==> wp(V1 := y-i, wp(S, y-i < V1)

Apply assignments in S, setting i := i+1

I && B ==> wp(V1 := y-i, y-(i+1) < V1)

Apply assignment

I && B ==> y-i-1 < y-i)

Trivially true.

(total 60p)

