
Re-Exam

Testing, Debugging, and Verification

TDA567/DIT082

DAY: 14 April 2015 TIME: 1400 − 1800

Responsible: Moa Johansson (0702 455 015)

Results: Will be published in May

Extra aid: Only dictionaries may be used. Other aids are not allowed!

Grade intervals: U: 0 – 23p, 3: 24 – 35p, 4: 36 – 47p, 5: 48 – 60p,
G: 24 – 47p, VG: 48 – 60p, Max. 60p.

Please observe the following:

• This exam has 7 numbered pages.
Please check immediately that your copy is complete

• Answers must be given in English
• Use page numbering on your pages
• Start every assignment on a fresh page
• Write clearly; unreadable = wrong!
• Fewer points are given for unnecessarily complicated solutions
• Read all parts of the assignment before starting to answer the first question.
• Indicate clearly when you make assumptions that are not given in the assignment

Good luck!
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Assignment 1 (Testing) (12p)

(a) Name, and describe precisely, the coverage criteria, related to source code, that
were described in the course.

(b) Describe in which way the various coverage criteria from (a) relate to each
other. Explain your answers.

(c) Explain what White Box and Black Box testing is, and how they differ from
one another.

Solution
[6p, 4p, 2p]

(a)

Statement Coverage (SC) is satisfied by a test suite TS, iff for every node n in the
control flow graph there is at least one test in TS causing an execution path via n.

Branch Coverage (BC) is satisfied by a test suite TS, iff for every edge e in the
control flow graph there is at least one test in TS causing an execution path via e.

Path Coverage (PC) is satisfied by a test suite TS, iff for every execution path ep of
the control flow graph there is at least one test in TS causing ep.

Decision Coverage (DC) For a given decision d, DC is satisfied by a test suite TS if
it contains at least two tests, one where d evaluates to false, and one where d evaluates
to true. For a given program p, DC is satisfied by TS if it satisfies DC for all d ∈ D(p).

Condition Coverage (CC) For a given condition c, CC is satisfied by a test suite
TS if it contains at least two tests, one where c evaluates to false, and one where c
evaluates to true. For a given program p, CC is satisfied by TS if it satisfies CC for all
c ∈ C(p).

Modified Condition Decision Coverage (MCDC) For a given condition c in deci-
sion d, MCDC is satisfied by a test suite TS if it contains at least two tests, one where
c evaluates to false, one where c evaluates to true, d evaluates differently in both, and
the other conditions in d evaluate identically in both. For a given program p, MCDC
is satisfied by TS if it satisfies MCDC for all c ∈ C(p).

(b)

• BC subsumes SC

• PC subsumes BC

• DC and CC are orthogonal

• DC subsumes BC

• MCDC subsumes DC
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• MCDC subsumes CC

c)

Black box testing techniques use some external description of the software to derive
test-cases, for example, a specification or knowledge about the input space of a method.

White box techniques derives tests from the source code of the software, for example
from branching points in execution, conditional statements (e.g. if, while).
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Assignment 2 (Debugging) (10p)

(a) Consider the following sequence of integer inputs: 0, 0, 0, 1, 1, 1, 0, 1.
We want to use the ddMin algorithm to find a small failing input subsequence.
An input sequence is failing if the number of 0s in it is the same as the number
of 1s.
Give one complete ddMin derivation for the above input. Motivate each step,
explaining what happens at each step as well as when and why the parameters
of the algorithm changes. A derivation without accompanying explanations
will not be given full marks.

(b) In the question (a), the ddMin algorithm was used to find a smaller failing
input sequence. State three reasons for why finding a small failing input is
relevant for debugging.

Solution
[7p, 3p]

(a) Full marks only with explanations of what goes on at each step.

Start with granularity n = 2 and sequence [0, 0, 0, 1, 1, 1, 0, 1]

==> n: 2 [1, 1, 0, 1] PASS (remove 1st chunk)

==> n: 2 [0, 0, 0, 1] PASS (remove 2nd chunk)

Increase number of chunks to min(n*2, len([0, 0, 0, 1, 1, 1, 0, 1])) = 4 as all tests
passed.

==> n: 4 [0, 1, 1, 1, 0, 1] PASS (remove 1st chunk)

==> n: 4 [0, 0, 1, 1, 0, 1] FAIL (remove 2nd chunk)

Adjust number of chunks to max(n-1, 2) = 3 as one test failed.

==> n: 3 [1, 1, 0, 1] PASS (remove 1st chunk)

==> n: 3 [0, 0, 0, 1] PASS (remove 2nd chunk)

==> n: 3 [0, 0, 1, 1] FAIL (remove 3rd chunk)

Adjust number of chunks to max(n-1, 2) = 2

==> n: 2 [1, 1] PASS (remove 1st chunk)

==> n: 2 [0, 0] PASS (remove 2nd chunk)

Increase number of chunks to min(n*2, len([0, 0, 1, 1])) = 4

==> n: 4 [0, 1, 1] PASS

==> n: 4 [0, 1, 1] PASS

==> n: 4 [0, 0, 1] PASS

==> n: 4 [0, 0, 1] PASS
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The number of chunks is now maximal, hence the minimal failing test case found here
is:

==> [0, 0, 1, 1]

(b) The ddMin algorithm is used to compute a small failing test case (it is not always
the smallest, as in the example above. This is because the algorithm is greedy). Having
a small failing test-case is useful because:

• A small failing test-case makes debugging easier, there is less code exercised (or
fewer loop iterations) so the space where the bug could possibly be is reduced.

• A small failing test-case might be easier to understand for a human.

• The failing test-case can be made part of a regression test suite, which is rerun
periodically.
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Assignment 3 (Formal Specification) (15p)

Consider an implementation of a circular buffer storing integers in Dafny. A circular
buffer starts empty, with some predefined capacity, specifying how many elements it
can hold. The size field stores information about how many elements are currently
stored in the buffer. As the buffer is circular, it does not matter at which index in the
buffer we start inserting elements, this is given by the start field. Elements can then
be added one by one, as long as there is room in the buffer. Should we reach the end,
we simply wrap around and start inserting elements from the beginning of the buffer,
where there are still unallocated slots.

Below is a skeletal implementation of a class CircularBuffer:

class CircularBuffer{

var buffer : array<int>;

var capacity : int;

var size : int;

var start : int;

predicate Valid()

{ }

constructor(cap: int, startInd : int)

{ }

method Add(elem : int)

{

var i := start+size;

buffer[i%capacity] := elem;

size := size+1;

}

}

Continued on next page!
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(a) Your task is to add the specifications and implementations that are currently
missing, for Valid, the constructor method and the Add method, taking the
following into account:

• size is never negative, and always less than, or equal to, capacity.

• The value of capacity and buffer.Length should always be the same.

• The buffer field should never be null in a CircularBuffer object.

• There should be space for at least one element in the circular buffer.

• On initialisation, the startInd must be between 0 and capacity. The
newly allocated buffer contains only zeroes.

• As long as there is room in the buffer, i.e. size is strictly smaller than
capacity, the following must hold:

– Add increases the size by one.

– After calling Add(elem), elem is stored in the buffer at some valid
index.

(b) Now suppose that we want to add a method FindFirstOdd(). This method
should return the index of the first element in the buffer which is odd, counting
from index 0 (i.e. you do not need to take the start index into account here).
If there is no odd element in the buffer, it should return -1. Write down an
implementation with pre-conditions, post-conditions and invariants to ensure
it is correct.
method FindFirstOdd() returns (ind : int) {}

Solution

[]
class CircularBuffer{

var buffer : array<int>;

var capacity : int;

var size : int;

var start : int;

predicate Valid()

reads this, this.buffer;

{

buffer != null &&

capacity > 0 && buffer.Length == capacity &&

0 <= start < buffer.Length &&

0 <= size <= capacity

}

constructor(cap: int, startInd : int)

modifies this;

requires cap > 0 && 0 <= startInd < cap;
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ensures fresh (buffer);

ensures Valid();

ensures start == startInd;

ensures forall i :: 0 <= i < buffer.Length ==> buffer[i] == 0;

{

size := 0;

capacity := cap;

start := startInd;

buffer := new int[cap];

forall (i | 0 <= i < buffer.Length)

{ buffer[i] := 0;}

}

method Add(elem : int)

modifies this, this.buffer;

requires Valid();

requires size < capacity;

ensures Valid();

ensures size == old(size)+1;

ensures exists i :: 0 <= i < buffer.Length && buffer[i] == elem;

{

var i := start+size;

buffer[i%capacity] := elem;

size := size+1;

}

}

method FindFirstOdd() returns (ind : int)

requires Valid();

ensures 0 <= ind < buffer.Length ==> buffer[ind]%2 != 0 &&

forall j :: 0 <= j < ind ==> buffer[j]%2 == 0;

ensures ind == -1 ==>

forall k :: 0 <= k < buffer.Length ==> buffer[k]%2 == 0;

//One alternative solution

requires Valid();

ensures -1 <= ind < buffer.Length;

ensures 0 <= ind ==> buffer[ind]%2 != 0;

ensures forall j :: 0 <= j < ind ==> buffer[j]%2 == 0;

ensures ind == -1 ==> forall k :: 0 <= k < buffer.Length ==> buffer[k]%2==0;

{

ind := -1;

var i := 0;

while (i < buffer.Length)

invariant i <= buffer.Length;

invariant forall j :: 0 <= j < i ==> buffer[j]%2 == 0;

{

if (buffer[i]%2 != 0)

{

ind := i;

return;

}
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i := i+1;

}

}
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Assignment 4 (Formal Verification) (13p)

Consider the following Dafny program:

method AlwaysEven(x : int) returns (y : int)

ensures y%2 == 0;

{

if (x%2 == 0)

{ y := x; }

else

{ y := (x-1);}

y := 2*y;

}

Next, suppose we want to run the following snippet of Dafny code:

method Test(){

var m := AlwaysEven(2);

var n := AlwaysEven(3);

assert m == n;

}

(a) The above code will cause a Dafny compiler error:

Error: assertion violation

Explain why.

(b) Fix AlwaysEven so that Dafny would be able to prove the assertion.

(c) Prove that your revised version of AlwaysEven satisfies its post-condition using
the weakest pre-condition calculus. Show all details of your proof and motivate
each step.

(d) Briefly explain what a loop invariant and a loop variant is, how they differ
and what they are used for in verification of programs.

Solution
[3p, 2p, 6p, 2p]

(a)

Dafny can’t prove the assertion because outside of the body of AlwaysEven it only
remember its contract. Therefore, inside the Test method, the only thing Dafny knows
about AlwaysEven is that it always returns an even number. This restriction is an
efficiency consideration to allow for the use of an automated theorem prover, otherwise,
proofs would quickly become unfeasibly complicated.

(b)

You need to refine the contract by adding two extra post-conditions:
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ensures x % 2 == 0 ==> y == 2*x;

ensures x % 2 == 1 ==> y == 2*(x-1);

(c)

Let R =

y%2 == 0 &&

x%2==0 ==> y == 2*x &&

x%2==1 ==> y == 2*(x-1)

Prove that:

wp(if(x%2==0) {y := x} else {y := x-1}; y:=2*y, R)

Apply Seq-rule:

wp(if(x%2==0) {y := x} else {y := x-1}, wp(y:=2*y, R))

Apply Assignment:

wp(if(x%2==0) {y := x} else {y := x-1}, R2)

where R2 =

2*y%2 == 0 &&

x%2==0 ==> 2*y == 2*x &&

x%2==1 ==> 2*y == 2*(x-1)

Apply Conditional-rule:

x%2==0 ==> wp(y:=x, R2) &&

x%2 != 0 ==> wp(y:=(x-1), R2)

Apply Assignment to the if-branch:

x%2==0 ==> 2*x%2 == 0 &&

x%2==0 ==> 2*x == 2*x &&

x%2==1 ==> 2*x == 2*(x-1)

The first conjunct is trivially true. The second also.

The third is true because x%2==1 is false, and false ==> anything is

true.

Apply Assignment to the else-branch:

x%2 !=0 ==> 2*(x-1)%2 == 0 &&

x%2==0 ==> 2*(x-1) == 2*x &&

x%2==1 ==> 2*(x-1) == 2*(x-1)
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The first conjunct is trivially true.

For the second the premise x%2==0 is false, so the whole conjunct is

true. The third is trivial.

d) A loop invariant essentially encodes induction over the number of loop executions.
It is a logical formula which has to hold immediately before the loop is entered, at
each iteration of the loop, and immediately after the loop exits. It is used to ensure
the correctness of the loop, with respect to the (method) specification. Proving this is
referred to as partial correctness.

A loop variant is a statement which decreases at each iteration of the loop, and is
bounded from below by 0. It is used to show that the loop terminates. If we also prove
that the loop terminates, we have shown total correctness.


