
Testing, Debugging, and Verification
Formal Specification, Part III

Atze van der Ploeg

December 1, 2015

TDV: Formal Specification /GU December 1, 2015 1 / 31

Last Lecture

I Introduced Dafny: An object oriented language with formal
specification

I Pre- and postconditions: requires/ensures

I modifies clauses: What fields may method change

I assert statements: Dafny tries to prove property.

Remember

Outside method body Dafny only ”remembers” annotations (pre- and
postconditions).

TDV: Formal Specification /GU December 1, 2015 2 / 31

Methods, Functions and Predicates

I Methods cannot be used in annotations (may change memory).
I functions and predicates can

I Cannot write to memory
I Single statement
I reads keyword states what location functions looks up.

TDV: Formal Specification /GU December 1, 2015 3 / 31

Dafny Functions

I Mathematical functions.

I Cannot write to memory (unlike methods). Safe to use in spec.

I Can only be used in annotations.

I Single unnamed return value, body is single statement (no
semicolon).

A function

function abs(x : int) : int

{ if x < 0 then -x else x }

I Now, can write e.g. assert abs(3) == 3;.

I Or, ensures r == abs(x).

TDV: Formal Specification /GU December 1, 2015 4 / 31

Dafny Functions

A function method

function method abs(x : int) : int {

if x < 0 then -x else x

}

I Functions are only used for verification.

I Not present in compiled code.

I Functions which does exactly same as a method can be declared
function methods.

I However, functions need not be efficient.

I Write simple (recursive) function to specify efficient, more complex
method.

TDV: Formal Specification /GU December 1, 2015 5 / 31

Recall: Predicates

Functions returning a boolean are called predicates.

A predicate

predicate ready()

reads this; {

insertedCard == null && wrongPINCounter == 0 &&

auth == false; }

Predicates are useful for ”naming” common properties used in many
annotations:

Example

method spitCardOut() returns (card : BankCard)

modifies this;

requires insertedCard != null;

ensures card == old(insertedCard);

ensures ready();

TDV: Formal Specification /GU December 1, 2015 6 / 31

Recall: Predicates

Functions returning a boolean are called predicates.

A predicate

predicate ready()

reads this; {

insertedCard == null && wrongPINCounter == 0 &&

auth == false; }

Predicates are useful for ”naming” common properties used in many
annotations:

Example

method spitCardOut() returns (card : BankCard)

modifies this;

requires insertedCard != null;

ensures card == old(insertedCard);

ensures ready();

TDV: Formal Specification /GU December 1, 2015 6 / 31

A few words on Framing

Recall from ATM example

predicate ready()

reads this;

{insertedCard == null && wrongPINCounter == 0 &&

auth == false;}

Reading Frame: memory region allowed to be read by function or
predicate (here, all fields of this object)

Why?

Efficiency, if a function does not read a part of memory, we can be sure
result is same as before a write.

TDV: Formal Specification /GU December 1, 2015 7 / 31

A few words on Framing

Recall from ATM example

predicate ready()

reads this;

{insertedCard == null && wrongPINCounter == 0 &&

auth == false;}

Reading Frame: memory region allowed to be read by function or
predicate (here, all fields of this object)

Why?
Efficiency, if a function does not read a part of memory, we can be sure
result is same as before a write.

TDV: Formal Specification /GU December 1, 2015 7 / 31

Framing, Example

var atm1 := new ATM;

var atm2 := new ATM;

. . .

assert atm1.ready();

some update to atm2

I Here, we know immediately that atm1 is still ready, as its portion of
memory hasn’t been changed.

I For simple example, easy to prove anyway, but might be infeasible
for more complex data-structures.

TDV: Formal Specification /GU December 1, 2015 8 / 31

Framing: Modifies clauses

Recall

method insertCard(c : BankCard)

modifies `insertedCard;

I Methods may read any part of memory

I Must declare what they change

I reads and modifies allows Dafny to work on one method at the
time

I Crucial for efficiency and feasibility of automated proofs.

I The logic about what memory can influence which results is called
Seperation Logic.

TDV: Formal Specification /GU December 1, 2015 9 / 31

More built in Data-structures: Sets

I Dafny also support Sets.

I Set: Collection of elements, no duplication.
I Immutable, allowed in annotations.

I Cannot be modified once created.
I ”Modification” by creating a new Set.
I c.f. strings in Java.

Examples: See Dafny online tutorial (link from lecture page).

TDV: Formal Specification /GU December 1, 2015 10 / 31

Examples: Sets

Basics

var s1 := {}; // the empty set

var s2 := {1, 2, 3}; // set contains exactly 1, 2, and 3

assert s2 == {1,1,2,3,3,3,3}; // true, no duplicates.

Union, intersection and set difference

var s3, s4 := {1,2}, {1,4};

assert s2 + s4 == {1,2,3,4}; // set union

assert s2 * s3 == {1,2} && s2 * s4 == {1}; // set

intersection

assert s2 - s3 == {3}; // set difference

TDV: Formal Specification /GU December 1, 2015 11 / 31

Examples: Sets

Basics

var s1 := {}; // the empty set

var s2 := {1, 2, 3}; // set contains exactly 1, 2, and 3

assert s2 == {1,1,2,3,3,3,3}; // true, no duplicates.

Union, intersection and set difference

var s3, s4 := {1,2}, {1,4};

assert s2 + s4 == {1,2,3,4}; // set union

assert s2 * s3 == {1,2} && s2 * s4 == {1}; // set

intersection

assert s2 - s3 == {3}; // set difference

TDV: Formal Specification /GU December 1, 2015 11 / 31

Examples: Sets

Subset operators

assert {1} <= {1, 2} && {1, 2} <= {1, 2}; // subset

assert {} < {1, 2} && !({1} < {1}); // strict, or proper,

subset

assert {1, 2} == {1, 2} && {1, 3} != {1, 2}; // equality

and non-equality

Set Membership

assert 5 in {1,3,4,5};

assert 1 in {1,3,4,5};

assert 2 !in {1,3,4,5};

assert forall x :: x !in {};

TDV: Formal Specification /GU December 1, 2015 12 / 31

Examples: Sets

Subset operators

assert {1} <= {1, 2} && {1, 2} <= {1, 2}; // subset

assert {} < {1, 2} && !({1} < {1}); // strict, or proper,

subset

assert {1, 2} == {1, 2} && {1, 3} != {1, 2}; // equality

and non-equality

Set Membership

assert 5 in {1,3,4,5};

assert 1 in {1,3,4,5};

assert 2 !in {1,3,4,5};

assert forall x :: x !in {};

TDV: Formal Specification /GU December 1, 2015 12 / 31

Recap: Using Quantified Dafny expressions

How to express:

I An array arr only holds values ≤ 2

forall i :: 0 <= i <arr.Length ==> arr[i] <= 2

TDV: Formal Specification /GU December 1, 2015 13 / 31

Recap: Using Quantified Dafny expressions

How to express:

I An array arr only holds values ≤ 2

forall i :: 0 <= i <arr.Length ==> arr[i] <= 2

TDV: Formal Specification /GU December 1, 2015 13 / 31

Recap: Using Quantified Dafny expressions

How to express:

I The variable m holds the maximum entry of array arr

forall i :: 0 <= i < arr.Length ==> m >= arr[i]

Is this enough?
arr.Length > 0 ==>

exists i :: 0 <= i < arr.Length && m == arr[i]

TDV: Formal Specification /GU December 1, 2015 14 / 31

Recap: Using Quantified Dafny expressions

How to express:

I The variable m holds the maximum entry of array arr

forall i :: 0 <= i < arr.Length ==> m >= arr[i]

Is this enough?

arr.Length > 0 ==>

exists i :: 0 <= i < arr.Length && m == arr[i]

TDV: Formal Specification /GU December 1, 2015 14 / 31

Recap: Using Quantified Dafny expressions

How to express:

I The variable m holds the maximum entry of array arr

forall i :: 0 <= i < arr.Length ==> m >= arr[i]

Is this enough?
arr.Length > 0 ==>

exists i :: 0 <= i < arr.Length && m == arr[i]

TDV: Formal Specification /GU December 1, 2015 14 / 31

Example: Specifying LimitedIntegerSet

class LimitedIntegerSet {

var limit : int;

var arr : array<int>;

var size : int;

method Init(lim : int)

{

limit := lim;

arr := new int[lim];

size := 0;

}

method Contains(elem : int) returns (res : bool){/*...*/}

method Find(elem : int) returns (index : int) {/*...*/}

method Add(elem : int) returns (res : bool) {/*...*/}

}

TDV: Formal Specification /GU December 1, 2015 15 / 31

Specifying Init: A validity predicate

What are the allowed values for the fields of a LimitedInSet?

class LimitedIntegerSet {

var limit : int;

var arr : array<int>;

var size : int;

predicate Valid()

reads this, this.arr;

{arr != null &&

0 <= size <= limit &&

limit == arr.Length}

TDV: Formal Specification /GU December 1, 2015 16 / 31

Specifying Init

method Init(lim : int)

modifies this;

requires lim > 0;

ensures Valid();

ensures limit == lim && size == 0;

ensures fresh(arr);

{. . .}

I New objects are indeed valid.

I Parameters set correctly.

I Array is freshly allocated.

TDV: Formal Specification /GU December 1, 2015 17 / 31

Specifying contains

method contains (elem : int) . . .

I Has no effect on the state.

I Returns a boolean.

I Might be useful in specifications.

I Let’s make it a function method!

function method contains (elem : int) : bool

reads this, this.arr;

requires this.Valid();

{exists i :: 0 <= i < size && arr[i] == elem}

TDV: Formal Specification /GU December 1, 2015 18 / 31

Specifying contains

method contains (elem : int) . . .

I Has no effect on the state.

I Returns a boolean.

I Might be useful in specifications.

I Let’s make it a function method!

function method contains (elem : int) : bool

reads this, this.arr;

requires this.Valid();

{exists i :: 0 <= i < size && arr[i] == elem}

TDV: Formal Specification /GU December 1, 2015 18 / 31

Specifying add

method add(elem : int)

modifies this.arr, this`size;

requires this.Valid();

ensures Valid();

ensures (!old(contains(elem)) && old(size) < limit) ==>

res && contains(elem) && size == old(size)+1 &&

(forall e :: e!=elem && old(contains(e)) ==>

contains(e));

ensures (old(contains(elem)) || old(size) >= limit) ==>

!res && size == old(size) &&

forall i :: 0 <= i < size ==> arr[i] == old(arr[i

]);

{/*...*/}

TDV: Formal Specification /GU December 1, 2015 19 / 31

Details of Specification

I How much detail needed in formal specification?

I Depends (to some extent) on what we want to prove about code.

I Recall: Dafny only ”remembers” spec of method outside method
body.

TDV: Formal Specification /GU December 1, 2015 20 / 31

Specifying Find

method Find(elem : int) returns (index : int)

requires Valid();

ensures 0 <= index < size ==> arr[index] == elem;

ensures index < 0 ==> forall k :: 0 <= k < size ==>

arr[k] != elem;

I Implemented using linear search (while loop).
I Dafny cannot prove post-condition!

I How many times do we go through the loop?
I Will it cover all elements?

I Solution: Loop invariants

TDV: Formal Specification /GU December 1, 2015 21 / 31

Introduction to Loop Invariants

I No way of knowing how many times code will loop.
I Need to prove for all paths of program.

I c.f. proof by induction.

Loop invariant is expression which holds:

I First time entering loop

I At each iteration of loop

I When exiting the loop

TDV: Formal Specification /GU December 1, 2015 22 / 31

Loop Invariant Example I

var i := 0;

while (i < n)

invariant 0 <= i;

{ i := i + 1; }

Dafny proves:

I Invariant holds when entering the loop.

I Invariant preserved by the loop.

I If invariant true at beginning of loop, it holds after executing the
loop once.

I Proof by induction.

TDV: Formal Specification /GU December 1, 2015 23 / 31

Loop Invariant Example II

Suppose we want to show that when exiting loop, i == n:

var i := 0;

while (i < n)

invariant 0 <= i;

{ i := i + 1; }

assert i == n

Fails!
All Dafny knows after loop exits is

I that loop guard failed: !(i < n) which means (i >= n)

I that the invariant holds: 0 <= i

Need to revise invariant: 0 <= i < n

TDV: Formal Specification /GU December 1, 2015 24 / 31

Loop Invariant Example II

Suppose we want to show that when exiting loop, i == n:

var i := 0;

while (i < n)

invariant 0 <= i;

{ i := i + 1; }

assert i == n

Fails!
All Dafny knows after loop exits is

I that loop guard failed: !(i < n) which means (i >= n)

I that the invariant holds: 0 <= i

Need to revise invariant: 0 <= i < n

TDV: Formal Specification /GU December 1, 2015 24 / 31

Loop Invariant Example II

Suppose we want to show that when exiting loop, i == n:

var i := 0;

while (i < n)

invariant 0 <= i;

{ i := i + 1; }

assert i == n

Fails!
All Dafny knows after loop exits is

I that loop guard failed: !(i < n) which means (i >= n)

I that the invariant holds: 0 <= i

Need to revise invariant: 0 <= i < n

TDV: Formal Specification /GU December 1, 2015 24 / 31

Loop Invariant Example III

Suppose we want to show that when exiting loop, i == n:

var i := 0;

while (i < n)

invariant 0 <= i < n;

{ i := i + 1; }

assert i == n

Fails: Invariant is not preserved
Dafny tries to prove that 0 <= i < n holds after each iteration

I Holds for every execution except last one.

I Need to revise invariant: 0 <= i <= n

I Finding the correct invariant can be challenging.

I Will revisit this topic in Formal Verification part of course.

TDV: Formal Specification /GU December 1, 2015 25 / 31

Loop Invariant Example III

Suppose we want to show that when exiting loop, i == n:

var i := 0;

while (i < n)

invariant 0 <= i < n;

{ i := i + 1; }

assert i == n

Fails: Invariant is not preserved
Dafny tries to prove that 0 <= i < n holds after each iteration

I Holds for every execution except last one.

I Need to revise invariant: 0 <= i <= n

I Finding the correct invariant can be challenging.

I Will revisit this topic in Formal Verification part of course.

TDV: Formal Specification /GU December 1, 2015 25 / 31

Loop Invariant Example III

Suppose we want to show that when exiting loop, i == n:

var i := 0;

while (i < n)

invariant 0 <= i < n;

{ i := i + 1; }

assert i == n

Fails: Invariant is not preserved
Dafny tries to prove that 0 <= i < n holds after each iteration

I Holds for every execution except last one.

I Need to revise invariant: 0 <= i <= n

I Finding the correct invariant can be challenging.

I Will revisit this topic in Formal Verification part of course.

TDV: Formal Specification /GU December 1, 2015 25 / 31

Loop Invariants for Find method

method Find(elem : int) returns (index : int)

requires Valid();

ensures index < 0 ==> forall k :: 0<= k<size ==> arr[k]!=elem;

ensures 0 <= index ==> index < size && arr[index] == elem;

{

index := 0;

while (index < size)

invariant forall i : int :: 0 <= i < index ==> arr[i] !=

elem

{

if(arr[index] == elem) {return index;}

index := index + 1;

}

index := -1;

I Dafny needs to know loop covers all elements.

I Everything before current index has been looked at and is not elem.

TDV: Formal Specification /GU December 1, 2015 26 / 31

Loop Invariants for Find method

index := 0;

while (index < size)

invariant forall k :: 0 <= k < index ==> a[k] != elem

{

if(arr[index] == elem) {return;}

index := index + 1;

}

index := -1;

I Everything before, but excluding index is not elem.

I Holds on entry: as index is 0, quantification over empty set. Implication
trivially true.

I Invariant is preserved: tests value before extending range of non-elem
range.

I Dafny complains: index may be out of range of array. Need invariant on
index too.

TDV: Formal Specification /GU December 1, 2015 27 / 31

Loop Invariants for Find method

index := 0;

while (index < size)

invariant forall k :: 0 <= k < index ==> a[k] != elem

invariant 0 <= index <= size

{

if(arr[index] == elem) {return;}

index := index + 1;

}

index := -1;

I Holds on entry: as index is 0, quantification over empty set. Implication
trivially true.

I Invariant is preserved: tests value before extending range of non-elem
range.

I Standard bound on index: One past end of growing range is a common
pattern.

I No array-out-of bound as k < index.

TDV: Formal Specification /GU December 1, 2015 28 / 31

Termination

I We know is if we exit the loop, we can assume negation of loop
guard and invariants.

I Invariant says nothing about whether loop actually ever exits.
I decreases clause:

I Expression gets smaller at each iteration
I Is bounded
I Often (but not always) integer value

I Dafny can often guess this itself.

Example

while (0 < i)

invariant 0 <= i;

decreases i;

{

i := i -1;

}

TDV: Formal Specification /GU December 1, 2015 29 / 31

Termination: Common pattern for decreases

Often count up, not down:

Example

while (i < n)

invariant 0 <= i <= n;

decreases (n - i);

{

i := i +1;

}

I Difference between n and i decrease.

I Bounded from below by zero: 0 <= (n - i).

I Very common pattern, Dafny’s guess in most situations.

TDV: Formal Specification /GU December 1, 2015 30 / 31

Summary

I Framing: reads and modifies caluses. Important for efficiency.

I Sets.

I Specifying ”valid” objects.

I Using quantifiers in specifications.

I Loops and loop invariant (more in coming lectures).

I Loop termination and decreases clauses (more later!).

TDV: Formal Specification /GU December 1, 2015 31 / 31

	Recap
	Functions and Predicates
	Framing
	Sets
	First-Order in Specifications
	Loop Invariants
	Termination
	Summary

