EXAM

Introduction to Functional Programming
TDA555/INN040

DAY: 24 October 2006 TIME: 8.30 -- 12.30 PLACE: V-salar

Responsible: Koen Lindstrom Claessen, Datavetenskap
Emil Axelsson, Datavetenskap

Result: Published 2 November, at the latest
Aids: An English (or English-Swedish, or English-X) dictionary
Grade: There are 4 assignments (with 16 + 15 + 25 + 3 = 59 points);

a total of at least 20 points guarantees a pass

Please read the following guidelines carefully:

¢ Answers can be given in Swedish or English

¢ Begin each assignment on a new sheet

¢ Write your personal number on each sheet

¢ Write clearly; unreadable = wrong!

¢ Full marks are given to solutions which are short, elegant, efficient, and correct

¢ Less marks are given to solutions which are unnecessarily complicated or
unstructured

¢ For each question, if your solution consists of more than 2 lines of Haskell code,
include a short description of what your intention is with your solution

¢ You can use any standard Haskell function in your solution --- a list of some
useful functions is attached

¢ You may use the solution of an earlier part of an assignment to help solve a later
part --- even if you did not succeed in solving the earlier part!

Good Luck!

Assignment 1 — Encryption (total 16p)

In this assignment, we will investigate the encryption and decryption of messages. Encryption means
to transform a plain text message into a code --- something that cannot be read by other people;
decryption is the task of turning the encrypted message back into the original text.

Already in early times, people felt the need to encrypt their messages. For example, the Roman
emperor Caesar wanted to hide the content of the messages that were sent between parts of his
army, in the case a messenger was captured by the enemy and the message was intercepted.

Caesar is said to have invented one of the first encryption techniques. The idea is that each letter in
the message is replaced by one which has shifted a given amount k of steps in the alphabet (Caesar
used k=3). So, the letter A in a message would be replaced by the letter D (=A+3), the letter B by E,
and so on. The alphabet is seen in a circular way here, so where for example the letter W would be
replaced by Z, X would be replaced by A, Y by B, and Z by C.

For example, if Caesar would want to send the message:
SENDMOREYOGURT

The result would be:
VHQGPRUHBRJIXUW

And nobody would understand! To decode the message, the reverse process would have to be
performed.

In Caesar's time, the alphabet had only 25 characters (the U and V were the same letter). In this
assignment, we will make use of the standard ASCII alphabet used on most computers, which has 256
characters.

(1p) Question A
Define two functions:
(+.), (=.) :: Char -> Int -> Char
The idea is that ¢ +. k shifts the character ¢ with k steps in the ASCII alphabet. (Note that we
make use of the full range 0..255 of character codes here, still using it in a circular way.) The

function (-.) is the inverse of (+.) --- the expression ¢ —. k shifts ¢ with k steps in the other
direction.

Examples:
Main> 'A' +. 17
) R|
Main> 'r' -. 17
] a]
Main> 'Z' +. 3
L}] L}
Main> 'Y' +. 255
) x|

(1p) Question B

Implement two functions:

encrypt, decrypt :: Int -> String —-> String

The function encrypt, given a shift distance and a message, encrypts the message, using
Caesar's technique. The function decrypt, given a shift distance and an encrypted message,
decrypts the message, assuming that the message has been encrypted using Caesar's technique.

Examples:
Main> encrypt 3 "SEND MORE YOGURT"

"VHQG#PRUH# \ \RTXUW"
Main> decrypt 3 "VHQGH#PRUH#\\RJXUW"
"SEND MORE YOGURT"

(2p) Question C

Define a QuickCheck property that states that encrypting and then decrypting a message with the
same shift distance results in the original message.

(1p) Question D

In order to be able to test your property using QuickCheck, the type of characters Char needs to
be an instance of the class Arbitrary. Give a suitable instance of Arbitrary Char.

Although it is possible to use Caesar's encryption method, it is not very good. For an enemy who
knows the method of encryption, it is a simple matter of trying out all possible shift distances to get to
know the original message. In Caesar's time, there were only 25 possible shift distances (do you see
why?). For our implementation, there are 256. So, to crack an encrypted message, it would be
enough to go through all possible ways it could have been encrypted, and pick the one that makes
most sense.

For 25 possible ways, this would have been OK to do by hand, but for 256 this is a bit much.
Therefore, we will write a function that does this for us.

We need to come up with a way of deciding, given 256 ways of decrypting a message, which one of
the decrypted messages "makes most sense”. One way to do this is to check the amount of common
characters in the decrypted message. A common character is a character that occurs often in a piece
of text. It depends on the language used which characters occur frequently. Often, if we use the
wrong shift distance, the decrypted message will contain lots of characters that occur quite
infrequently in normal text. But if we use the correct shift distance, the amount of common characters
will be quite high.

In order to decide what characters are common in a message, we can look at and analyze texts in the
same language as the message.

(4p) Question E
Implement a function:
common :: String -> [Char]

that, given a text, computes the 10 characters that occur most frequently in the text (these
should of course all be different).

Example:

Main> do s <—- readFile "“text”, print (common s)
" etsoiahrn”

Now, we are ready to write a function that can crack an encrypted message. We simply try all possible
decryptions, and produce the one that has the largest amount of common characters in it.

(4p) Question F
Implement a function:
crack :: FilePath —-> String -> IO String

that, given a filename (containing a suitable text that we use in order to compute common
characters), and an encrypted message, decrypts the message using the most likely shift distance,
based on the amount of common characters in the given result.

Example:

Main> do s <- crack “text” “uzulZlt\131rt[1\133yvit\128uvP”; print s
"did I crack the code?"

Finally, let us take a look at a method of encryption that is a little bit harder to crack: The Vigenere
method, developed by the Frenchman Blaise de Vigenére in the 16-th century. The Vigenére method

is a bit like Caesar’s method, although the encryption works with a finite sequence of different shift
distances. Each shift distance from this sequence is applied to its own letter, by lining up the shift
distance repeatedly with the message.

For example, to encrypt the message
HASKELL
with the shift distance sequence 3,2,4, we would shift H by 3, A by 2, and S by 4 steps. Then, we

would shift K by 3 steps, E by 2 steps, and L by 4 steps, and so on, until we have seen all letters in
the message. The final result would be:

KCWNGPO
(2p) Question G
Implement two functions:
encryptV, decryptV :: [Int] -> String —-> String

that encrypt and decrypt a given message using a Vigenére-sequence of shift distances.

(1p) Question H

Define a QuickCheck property that states that encrypting and then decrypting a message using
the Vigenere method with the same sequence of shift distances results in the original message.
Think about what happens when the sequence is empty!

Note: 7he Vigenére method of encryption is not very good either. There exist variants of the cracking
method for this method as well. The only thing that is needed is to know the length of the shift
distance sequence. Often, this sequence is quite short. However, we can increase the power of the
method by increasing the length of the shift sequence.

Assignment 2 — Summarizing Replies to a Questionnaire (total 15p)

In this assignment, we will develop a Haskell program that can summarize replies to a questionnaire,
for example a course questionnaire. The questionnaire is web-based, and stores all replies it has
gotten so far in a special file. We will not be bothered with reading in and analyzing this file; instead,
we may assume that we know how to read this file to get a list of replies.

An example course questionnaire might look as follows:

1. What is your general impression of the course?

2. What did you think of the exercises classes?

3. What did you think of the fact that there was only one lecture in week 2?
4. What did you think of the lab assignments?

5. How difficult was the course for you?

A reply from one person is modelled by a list of pairs. An example of a reply is the following:

aReply :: Reply
aReply = [(1,"very good"), (3,"bad"), (4,"okay")]

This models the fact that the person who entered the answers, answered “very good” on question 1,
“bad” on question 3, and “okay” on question 4. Note that not all questions have to be answered by a
person. For example, the above person did not answer question 2 and 5.

Here is an example of a list of replies:

someReplies =
[[(1,"very good"), (3,"bad"), (4,"okay")]
, [(2,"good"), (3,"bad"), (4,"good"), (5,"difficult")]
, [(4,"ckay"), (5,"very difficult")]
1

(1p) Question A
Give a suitable type definition of the type Reply.
What is the type of the function someReplies?
(1p) Question B
A reply should not have two answers for the same question. Define a function:
validReply :: Reply —> Bool
that checks this.
(2p) Question C
Define a function:
questions :: [Reply] -> [Int]

that, given a list of replies, returns all question numbers that were answered in any of the replies.
The list should not contain any duplicates, and should contain the question numbers in the right
order.

Example:

Main> questions someReplies
[1,2,3,4,5]

(2p) Question D

Define a function:
answers :: Int -> [Reply] —-> [String]

that, given a question number and a list of replies, gathers all answers to this question given in
any of the replies. Note: This list can contain duplicates!

Examples:

Main> answers 3 someReplies
[\\badn , nbadn]

Main> answers 5 someReplies
[“difficult”,”very difficult”]

(3p) Question E
Define a function:
summary :: [Reply] -> [(Int,[(Int,String)])]

that, given a list of replies, produces a table, containing, for each question, all answers that were
given to that question, and how many times that answer was given. The answers should be
sorted in such a way that the most frequent answer comes first.

Example:

Main> summary someReplies
[(1,[(1,"very good")]), (2,[(1,"good")]),
(3,[(2,"bad")]), (4,[(2,"okay"), (1,"good")]),
(5,[(1,"very difficult"), (1,"difficult")]) 1]

We can see for example that the answers to question 3 were 2 “bad”s, and the answers to
question 4 were: 2 “okay”s and 1 “good”.

(3p) Question F

Define a function:

summarize :: [Reply] —-> IO ()
that, given a list of replies, prints out a summary of the replies, where also percentages are
calculated.
Example:

Main> summarize someReplies

Ql: 100% very good

Q2: 100% good

Q3: 100% bad

Q4: 66% okay 33% good

Q5: 50% very difficult 50% difficult

(2p) Question G

To get a better overview of the actual answers that are given, we would like to produce an
additional summary of the results, where answers like “"good” and “very good” (or “difficult” and
“very difficult”) are grouped together. In this way, it is easier to see what percentage of answers
are on the “right side”.

Define a function:
mild :: [Reply] —> [Reply]

that, transforms all answers in the given replies into milder answers, by removing the word “very”
from them.

Example:

Main> summarize (mild someReplies)
Ql: 100% good

Q2: 100% good

Q03: 100% bad

Q4: 66% okay 33% good

Q5: 100% difficult

Assignment 3 -- A Theorem Prover (total 25p)

In this assignment, we will develop a simple theorem prover for propositional logic. (Remember that
propositional logic simply is a different name for boolean expressions.) In the end, our theorem prover
will be able to decide if a given formula is val/id or not. A formula is valid if it is true for all possible
values of the variables.

An example of a valid formula is (x || not x), because it evaluates to true no matter what value we
pick for x. An example of a non-valid formula is (x && y), because it is false when for example x is
false.

We will work with the following datatype:
type Var = String

Var Var

data Form =
| And Form Form
|
|

Not Form
Bool Bool

Using the above type, the logical formula (x && y) is modelled by the Haskell expression (Vvar “x”
“And’ Var “y”).

An immediate observation is that there are no constructors for other logical operators, such as for
example or and implication! Luckily, we know that (x || y) = not (not x && not y), and we also know
that (x =>y) = (not x || y).

(2p) Question A
Define two functions:
orr, impl :: Form -> Form —-> Form

that calculate the or and implication of two formulas, respectively. You will have to express these
in terms of the constructor functions you have. (The function orr is called that because the
function name or is already taken.)

You may not change the Form datatype to do this!
(2p) Question B
Later on, we will have to know what variables occur in a given formula. Define a function:
vars :: Form -> [Var]

that calculates which variables occur in a given formula. The list of variables that is computed
should not contain the same variable name twice.

Example:

Main> vars (Var “x” ‘And’ (Var ”x” ‘orr’' Var "y”))
\\xI’ , I’y/’]

(1p) Question C

Define a QuickCheck property that states that no variable name occurs twice in the result of the
function vars.

In order to be able to test your property using QuickCheck, the Form type needs to be made an
instance of the class Arbitrary. We have started with this already:

instance Arbitrary Form where
arbitrary = sized arbForm
where
arbForm n =
frequency
[(1, do s <- elements ["x","y","z"]
return (Var s))

, (n, do p <- arbForm (n-1)
return (Not p))
]

The above generator only generates formulas with variables “x”, “y”, and “z". There are also a few
cases missing.
(2p) Question D

Explain in English or Swedish how this generator works: What role does the argument n to the
function arbProp play? Why does it need to be there? What does frequency do?

(2p) Question E

Add the cases for And and Bool to the generator. (You do not have to copy the above code, just
say where you make changes and what the changes are.)

The next step is to create a function that can compute the value of a given formula. To do this, we
need to know what the values of the variables occurring in the formula are. We do this by specifying
an environment. We model the environment as a function from variable names to values.

type Env = Var —-> Bool

An example of an environment is the following:

example :: Env
example “x” = True
example _ = False

This environment assigns the value true to the variable x, and false to all other variables.
(3p) Question F
Define a function:
eval :: Env —> Form —> Bool
that calculates the value of a formula, given the environment that defines all variables.
Example:

Main> eval example (Var “x” ‘And’ (Var ”x” ‘orr' Var "y”))
True

Formulas can often be simplified enormously. For example, the formula (x || (y && false)) can be
simplified to just x. This is because constant values, such as True and False, as arguments to logical
operators, can always be simplified away.

(5p) Question F
Define a function:
simplify :: Form —-> Form
that simplifies a given formula.

In the resulting formula, there should be no occurrences of (Bool _) left as arguments to And
or Not. Also, all occurrences of Not (Not x) should have been simplified to x.
Example:

Main> simplify (Var “x” ‘orr' (Var ”"y” ‘And’ Bool False))
Var \\xll

(3p) Question G

Write two QuickCheck properties about simplify. (1) A property that states that the value of a
simplified formula in a given environment is the same as the original formula. (2) A property that
states that the result of simplification does not contain any occurrences of true or false anymore.

(4p) Question H

Define a function:

valid :: Form -> Bool

that checks if a given formula is valid or not. It should do this by first simplifying the formula, and
then checking if the formula evaluates to true for all possible environments.

(1p) Question I

Define a QuickCheck property that states soundness of your theorem prover; if a formula is
deemed valid by your function, it really evaluates to true for every possible environment.

Assignment 4 -- Background Knowledge (total 3p)

In this assignment, you have the chance to show us what background knowledge you have picked up
during the course.

Please only answer one of the following questions. You can choose which one!
(3p) Question A

Discuss the difference between functions of type A —> B and functions of type A -> 10 B. Are
there things that you can do with one that you cannot do with the other? What is the point of
separating these two kinds of functions? How does this difference influence the design of your
program?

(3p) Question B

What are the main differences between the programming language Haskell and the programming
language Erlang? What are the main similarities? You may discuss programming language
“features” as well as the difference in purpose behind the two.

(3p) Question C

In a seguential or imperative programming language, a programmer expresses a sequence of
instructions that should be carried out by the computer, one step at a time. Discuss what the
disadvantage of this principle is in a parallel setting (where many things happen at the same
time), for example when using a dual core processor. What can the advantage of functional
programming be in this context?

Appendix — Standard Haskell Functions

This is a list of selected functions from the standard Haskell modules: Prelude, Data.List, Data.Maybe,
Data.Char. You may use these in your solutions.

—— standard type classes

class Show a where
show :: a —-> String

class Egq a where

(==), (/=) :: a -> a —-> Bool

class (Egq a) => Ord a where
(<), (=), (>=), (>») :: a -> a —-> Bool
max, min . a —> a —> a

class (Egq a, Show a) => Num a where
), (=), (%) a ->a > a
negate tra —> a
abs, signum a —> a
fromInteger Integer —> a

class (Num a, Ord a) => Real a where
toRational :: a —> Rational

class (Real a, Enum a) => Integral a where
quot, rem :ra —> a —> a
div, mod o a —> a —> a
toInteger :: a —> Integer

class (Num a) => Fractional a where
(/) it a > a -> a
fromRational :: Rational —> a

class (Fractional a) => Floating a where
exp, log, sgrt tra —> a
sin, cos, tan tra —> a

class (Real a, Fractional a) => RealFrac a where
truncate, round :: (Integral b) => a -> b
ceiling, floor :: (Integral b) => a > b

—-— numerical functions

even, odd :: (Integral a) => a —-> Bool
even n =n ‘rem 2 ==
odd = not . even

—-— monadic functions

sequence :: Monad m => [m a] -> m [a]
sequence = foldr mcons (return [])
where mcons p g = do x <- p; xs <- g; return (x:xs)
sequence_ :: Monad m => [m a] -> m ()
sequence_ xs = do sequence xs; return ()

—-— functions on functions

id o a —> a

id x = x

const tta > b —> a

const x _ = x

(.) t: (b =>c¢c) => (a => b) > a -> c

f.g =\ x —>f (g x)

flip :: (a->b ->c¢c) —>b ->a ->c

flip £ x y =fyx

($) (a => b) > a —>b

f$ x = f x

—-— functions on Bools

data Bool = False | True

(&&), (11) :: Bool -> Bool —> Bool
True && x = X

False && _ = False

True I _ = True

False || x = x

not :: Bool -> Bool
not True = False

not False = True

—-— functions on Maybe

data Maybe a = Nothing | Just a

isJust :: Maybe a -> Bool
isJust (Just a) = True

isJust Nothing = False

isNothing :: Maybe a -> Bool
isNothing = not . isJust
fromJust :: Maybe a —> a
fromJust (Just a) = a

maybeToList :: Maybe a -> [a]
maybeToList Nothing = []

maybeToList (Just a) = [a]

listToMaybe :: [a] —> Maybe a
listToMaybe [] = Nothing
listToMaybe (a:_) = Just a

—-— functions on pairs

fst :: (a,b) -—> a

fst (x,vy) = X

snd :: (a,b) > b

snd (x,Y) =y

curry :: ((a, b) > c¢c) > a > Db -> c
curry f x y = f (x, V)

uncurry ::r (a => b ->c¢c) -> ((a, b) => <)
uncurry f p = £ (fst p) (snd p)

—-— functions on lists

map :: (a -> b) -> [a] -> [b]

map f xs = [£ x | x <= xs]

(++) :: [a]l —> [a] —> [al

xs ++ ys = foldr (:) ys xs

filter :: (a —> Bool) -> [a] —-> [a]
filter p xs = [x | x <- x5, P X]
concat :: [[a]l] -> [a]

concat xss = foldr (++) [] xss
concatMap :: (a -> [b]) —> [a] —> [Db]

concatMap f = concat . map f

head, last [a] —>
head (x:_) = x
last [x] X
last (_:xs) = last xs
tail, init [a] —>
tail (_:xs) = XS
init [x] =[]
init (x:xs) = x : ini
null [a] —>
null [] = True
null (_:_) = False
length [a] —>
length [] =0
length (_:1) =1 + len
(rh [a] —>
(x:_) 't 0 = x
(_:xs) !'!' n = xs !l
foldr (a —>
foldr £ z [] = z
foldr f z (x:xs8) f x (f
foldl (a —>
foldl £ z [] A
foldl f z (x:xs) = foldl
iterate (a —>
iterate f x = x it
repeat a —> [
repeat x = xs whe
replicate Int —>
replicate n x = take n
cycle [a] —>
cycle [] = error
cycle xs = xs' wh
take, drop
take n _ | n <=0
take _ [] =
take n (x:xs) =
drop n xs | n <=0 =
drop _ [] =
drop n (_:xs) =
splitAt
splitAt n xs =
takeWhile, dropWhile
takeWhile p [] =
takeWhile p (x:xs)

| p x =

| otherwise =
dropWhile p [] =
dropWhile p xs@(x:xs')

I p x =

| otherwise =
lines, words String

—— lines "apa\nbepa\ncepa\

-- words "apa bepa\n cepa
unlines, unwords [Strin
-— unlines ["apa", "bepa","
—— unwords ["apa", "bepa","
reverse [a] —>

a
[a]
t xs
Bool
Int
gth 1
Int —> a
n-1)
b ->b) -> b -> [a] > b
oldr £ z xs)
b ->a) ->a —-> [b] —> a
f (f z x) xs
a) —> a —> [al
erate £ (f x)
al
re xs = X:!XS
a —> [a]
(repeat x)
[a]
"Prelude.cycle: empty list"
ere xs' = xs ++ xs'
Int —-> [a] —> [a]
[1]
[1]
X take (n-1) xs
XS
[1]
drop (n-1) xs
Int -> [a] -> ([al, [al])
(take n xs, drop n xs)
(a => Bool) —> [a] —> [a]
[1
X takeWhile p xs
[1
[]
dropWhile p xs'
XS
-> [String]
n" == ["apa", "bepa", "cepa"]
" == ["apa", "bepa", "cepa"]
gl -> String
cepa"] == "apa\nbepa\ncepa"
cepa"] == "apa bepa cepa”
[a]

reverse = foldl (flip (:)) []

and, or :: [Bool] —-> Bool
and = foldr (&&) True
or = foldr (|]|) False
any, all :: (a —=> Bool) -> [a] —-> Bool
any p = or . map p
all p = and . map p
elem, notElem :: (Eg a) => a —-> [a] —> Bool
elem x = any (==)
notElem x = all (/= x
lookup :: (Eg a) => a —> [(a,b)] -> Maybe b
lookup key [] = Nothing
lookup key ((x,Vy):xys)

| key == x = Just y

| otherwise = 1lookup key xys
sum, product :: (Num a) => [a] —> a
sum = foldl (+) O
product = foldl (*) 1
maximum, minimum :: (Ord a) => [a] -> a
maximum [] = error "Prelude.maximum: empty list"
maximum xs = foldll max xs
minimum [] = error "Prelude.minimum: empty list"
minimum xs = foldll min xs
zip :: [a]l —> [b] —> [(a,b)]
zip = zipWith (,)
zipWith 1 (a=>b->c) -> [a]l->[b]->[c]

zipWith z (a:as) (b:bs)
= z a b : zipWith z as bs

zipWith _ _ _ = [

unzip :: [(a,b)] => ([al, [b])

unzip = foldr (\(a,b) ~(as,bs) -> (a:as,b:bs)) ([1,[1])
nub :: Eg a => [a] —> [a]

nub [] [1

nub (x:xs) =x :nub [y | v <= xs, v /=x]

delete :: Eg a => a -> [a] —> [a]

delete y [] =[]

delete y (x:xs) = if x == y then xs else x : delete y xs
(\\) :: Eq a => [a] -> [a] -> [a]

(\\) = foldl (flip delete)

union :: Eq a => [a] -> [a] —> [al]

union xs ys = xs ++ (ys \\ xs)

intersect :: Eg a => [a] —> [a] —> [a]

intersect xs ys = [x | x <- xs, x ‘elem’ vys]

intersperse tra —> [a] —> [a]
-- intersperse 0 [1,2,3,4] == [1,0,2,0,3,0,4]

transpose :: [[all —> [[all

-- transpose [[1,2,3],[4,5,6]] == [[1,4],[2,5],1(3,6]]
partition :: (a —> Bool) -> [a] -> ([al,[al)
partition p xs = (filter p xs, filter (not . p) xs)
group :: Eq a => [a] -> [[a]]

- group "aapaabbbeee" == ["aa","p","aa", "bbb", "eee"]
isPrefixOf, isSuffixOf :: Eqg a => [a] —-> [a] —-> Bool
isPrefixOf [] _ = True

isPrefixOf _ [] = False

isPrefixOf (x:xs) (y:ys) = x ==y && isPrefixOf xs ys

isSuffixOf x y = reverse x 1sPrefixOf" reverse y

sort :: (Ord a) => [a] —> [a]

sort = foldr insert []

insert :: (0rd a) => a —> [a] —> [a]

insert x [] = [x]

insert x (y:xs) = if x <= y then x:y:xs else y:insert x xs

—-— functions on Char

type String = [Char]
toUpper, tolLower :: Char -> Char
—-— toUpper 'a' == 'A'

—— toLower 'Z'

digitToInt :: Char -> Int
—-— digitToInt '8' == 8
intToDigit :: Int -> Char
—-— intToDigit 3 == '3'
ord :: Char -> Int

chr :: Int -> Char

