CHALMERS TEKNISKA HOGSKOLA Friday, January 14th, 2005
Datavetenskap Functional Programming
Jan-Willem Roorda INN040/TDA450

Exam Functional Programming

Friday, January 14th, 2005, 8.30-12.30.

Examiner: John Hughes.

Questions during the exam will be answered by Jan-Willem Roorda, tel 031-
7721023.

Permitted aids:
English-Swedish or English-other language dictionary.

e Begin each question on a new sheet. Write your personal number on every
sheet.

e You may lose marks for unnecessarily long, complicated, or unstructured
solutions.

e Full marks are awarded for solutions which are elegant, efficient, and cor-
rect.

e You are free to use any Haskell standard functions, including those whose
definitions are attached, unless the question specifically forbids you to do
S0.

e You may use the solution of an earlier part of a question to help solve a
later part, even if you did not succeed in solving the earlier part.

e The exam consists of 3 questions with a total of 60 points. Chalmers
students need 24 points to pass the exam. GU students need 28 points to
pass.



(a) Define the concept of a higher-order function and give an example. (3 p)
(b) Define the concept of a polymorphic function and give an example. (3 p)

(¢) The following two programs look very similar. Rewrite them using a
higher-order polymorphic help function. (You can either define the
help function yourself or find it in the Haskell prelude.)

findEvens :: [Int] -> [Int]

findEvens [] = []

findEvens (x:xs) = if even x then x : findEvens xs else findEvens xs

findDigits :: String -> String
findDigits [] = []
findDigits (x:xs) = if isDigit x then x : findDigits xs else findDigits xs

(3 p)

(d) What are the types of the following functions? You do not need to
give the most general types—just ones that are correct.

fi n m = (n+m,n==m)
f2xyz=[[x]]: [y] : z

£3 = map words
3 p)

(e) Give an example of an expression that terminates under lazy evalu-
ation, but would not terminate under eager evaluation. (3p)



2. This question concerns finding change. Suppose you have a collection of

coins in your pocket, which we represent by a list of numbers such as
[1,1,5,5,5,10,10]. Then you can pay 16kr by paying three 5kr coins
and a lkr, but you cannot pay 18kr at all. Suppose the person you are
paying also has some coins, say [1,1,1,5]. Then you can pay 18kr by
paying 20kr, and receiving 2kr in change. We will design functions to
decide whether one person can pay another a specific amount, with or
without giving change.

(a) Define a function
subsets :: [a] -> [[al]

which given a list, returns a list of all the ways of choosing some of
the list elements. For example,

subsets [1,2,3] ==
tm,rs1,r21,12,31,1011,11,31, 1,21, [1,2,31]

(the order of this list doesn’t matter here).
(b) Define a function

amounts :: [Int] -> [Int]

which given a list of the coins in your pocket, returns a list of all the
amounts you can pay using those coins.

(c¢) Define a function
withChange :: [Int] -> [Int] -> [Int]

which, given a list of the coins in the first person’s pocket, and a
list of the coins in the second person’s pocket, returns a list of all
the amounts the first person can pay the second assuming that the
second person is willing to provide change. The result should not
contain negative numbers.

(d) The subsets function you wrote in part (a) is inefficient for this
problem, because it ignores the fact that we may have many coins
with the same value in our pockets. For example,

subsets [1,1] ==
(0, r11,011,01,11]

where the two subsets [1] represent choosing different coins, but
with the same value. Since we do not care which coin we actually
pay with, we do not need to consider these subsets separately.

We can improve the efficiency of our program by working with bags
instead, which we represent by lists of pairs of a coin value, and the

(3 p)

(3 p)

number of coins of that value in the bag. For example, [1,1,5,5,5,10,10]

corresponds to the bag [(1,2),(5,3),(10,2)].

i. Define a function



bag :: Eq a => [a] -> [(a,Int)]

which converts a set to a bag. (3 p)
ii. Define a function

set :: [(a,Int)] -> [a]

which converts a bag back into a set. (3 p)

iii. Define a function
subbags :: [(a,Int)] -> [[(a,Int)]]

which returns a list of every bag we can make by choosing some
of the elements of the given bag. For example,

subbags [(1,2)] ==

00, 0,071, 01,2)]1] (4 p)
How would you use these functions to improve your function withChange?
(1p)



3. This question concerns Huffman coding, a form of data compression used,
among other things, as part of JPEG image compression. Huffman cod-
ing works by analyzing the input to be compressed and assigning each
character a code (sequence of bits), so that the most common characters
are assigned short codes, and rarer characters longer ones. Each character
is then replaced by its code, which usually results in a shorter bitstring.
For example, if the text to be compressed were just the word “good”, the
codes assigned might be

'd’ | 10
7g) 11
70) 0

and the compressed text would then be “110010” — six bits, which is
much less than the 32 bits the uncompressed string requires. (In practice
the table of codes must also be stored with the compressed text, which
occupies space, so Huffman coding only pays off for larger inputs).

The code is constructed by building a data structure (tree) such as the
one below, in which all the characters from the text appear.

The code for each character is read off by tracing a path from the top
(root) of the tree to the character, and outputting a ‘0’ every time one
traces an arrow pointing left, and a ‘1’ every time one traces an arrow
pointing right. For example, to reach ‘d’ from the top, we go first right
and then left, so the code is “10”. Frequently occurring characters are
placed higher up in the tree than less common ones, and so are assigned
shorter codes.

To construct the tree, we first construct a “trivial tree” (containing only
one character) for each character in the input, and assign it a “weight” of
the number of times that character occurs. In our example, we construct

e a tree just containing ‘d’, with weight 1,



e a tree just containing ‘g’, with weight 1,

e a tree just containing ‘o’, with weight 2.

Then we combine the two trees with least weight, obtaining a new tree
whose weight is the sum of the weights of the original trees. In this case,
we combine the trees containing ‘d’ and ‘g’ to obtain

N

d 9

with weight 2. This step is then repeated until only one tree remains. The
codes can be read off from this final tree.

We shall represent these trees in Haskell using the type
data Huffman = Leaf Char | Branch Huffman Huffman

For example,

e a tree containing one character is represented as a Leaf — e.g.
Leaf ’d’,

e the final tree for our example is represented as
Branch (Leaf ’0’) (Branch (Leaf ’d’) (Leaf ’g’)).

Notice that we do not need to store the ‘0’s and ‘1’s in our pictures: given
a tree Branch left right we know anyway that all the characters in the
left branch have codes starting with ‘0’, while all the characters in the
right branch have codes starting with ‘1’.

We shall represent code tables using the type
type CodeTable = [(Char, String)]

where each character is paired with its code, as a string of bits. In our
example, the code table would be

exampleCodeTable = [(’d’,"10"), (C’g’,"11"), (o’,"0")]
(a) Define a function

encode :: CodeTable -> String -> String

such that encode code text replaces all the characters in text with
their codes, taken from code. For example

Main> encode exampleCodeTable "good"
"110010"



(4 p)
(b) Define a function
extractCodes :: Huffman -> CodeTable
which converts a tree into the corresponding code table. For example,

Main> extractCodes (Branch (Leaf ’0’) (Branch (Leaf ’d’) (Leaf ’g’)))
[(707 , nou) s (’d’ ,"10") s (;g; ,"11")]
Define extractCodes by pattern matching; that is, write a definition
of the form
extractCodes (Leaf x) = ...
t tCod. B h 1 = ...
extractCodes (Branc r) (5 p)
(c) Define a function

buildTree :: [(Int,Huffman)] -> Huffman

which converts a list of partial trees and their weights into a complete
tree, by repeatedly combining the two trees with least weights. For
example,

Main> buildTree [(1,Leaf ’d’), (1,Leaf ’g’), (2,Leaf ’0’)]
Branch (Leaf ’0’) (Branch (Leaf ’d’) (Leaf ’g’))

(6 p)

(d) Define a function

huffmanCode :: String -> CodeTable

which constructs the Huffman code table from the given input string.

For example,

Main> huffmanCode "good"

[(’d’ ,"10") s (Jg) ,"11") , (Jo; ,uon)] (7 p)
(e) Define a function

compress :: String -> String

which converts an input string to its encoding. For example,

Main> compress "good"

"110010" (3p)



