Building the Parsing Library

Last time we saw

A library for building parsers containing:
* An abstract data type Parser a
A function

parse «.

Parser a -> String -> Maybe(a,String)

» Basic building blocks for building parsers

We also saw

A specific parser (for Expr) built from scratch,
based on

type Parser a = String -> Maybe (a,String)

Recap of Parsing.hs

[See course home page for APl and source]
Parser implements the Monad type class

For now, that just means that we can use “do”
notation to build parsers, just like for |O and Gen

do IO

s <- getlLine

C <- readFile s do

return $ s ++ C n <- elements[1..9]

m <- vectorOf n arbitrary

Gen

return $ n:m

do Parser
c <- sat (" elem ”;,:”)
ds <- chain digit (char c)
return ds

IO t

Instructions for
interacting with
operating
system

Run by GHC
runtime system
produce value
of type t

Gen t

* |nstructions for

building random
values

Run by
quickCheck to
generate
random values
of type t

Parser t

* |nstructions for
parsing

 Run by parse to
parse a string
and produce a
Maybe t

Year
1997
1999

1999

1996

Make
Ford
Chevy

Chevy

Jeep

Example, a CSV file

Model
E350
Venture "Extended Edition"

Venture "Extended Edition,
Very Large"

Grand Cherokee

Description

ac, abs, moon

MUST SELL!
air, moon roof,
loaded

Price
3000.00
4900.00

5000.00

4799.00

Example, a CSV file

The above table of data may be represented in CSV format as follows:

Year,Make,Model,Description,Price
1997 ,Ford,E350,"ac, abs, moon",3000.00
1999,Chevy, "Venture ""Extended Edition""","",4900.00

1999,Chevy, "Venture ""Extended Edition, Very
Large""",,5000.00

1996,Jeep,Grand Cherokee, "MUST SELL!
air, moon roof, loaded",4799.00

wikipedia

€ - C A [) www.cse.chalmers.se/edu/course/TDA452/FPLecture... @ 77 @ 24} 0 § QPO PSS :

Maintainer dave@chalmers.se

Parsing Safe

data Parser a

Safe-Inferred

U
P. parse :: Parser a -> String -> Maybe (a, String)

pSsis

readsP Read a => Parser a

failure :: Parser a

'Syno

Doc

sat :: (Char -> Bool) -> Parser Char
data Pi item

Parser Char

The : char :: Char -> Parser Char
C
digit :: Parser Char
B Insta (+++) :: Parser a -> Parser a -> Parser a

Mor (<:>)

¢ Parser a -> Parser [a] -> Parser [a]

¢ Parser a -> Parser b -> Parser b

Fur (>->)

¢ Parser b -> Parser a -> Parser b

Apr (<-<)
oneOrMore :: Parser a -> Parser [a]

zeroOrMore

: Parser a -> Parser [a]
parse

chain :: Parser a -> Parser b -> Parser [a]
Runs the parser on the given string to return maybe a thing and a

Example & Implementation

FPLectures/CSVexample.hs

FPLectures/Parsing.hs

A New Type for Parsers

Make parsers into a new type:

data Parser a = P (String -> Maybe (a,String))

o

]

Need this for later to:

* hide inner workings
* add to class Monad

J

Now we need a function to apply a parser:

parse :: Parser a -> String -> Maybe (a,String)
parse (Pp)s=ps

Basic parsers (1)

/ Always succeeds\

In producing an a

success :: a -> Parser a without consuming
success a = P $ \s -> Just(a,s) any of the input
string
failure :: Parser a _ -
failure = P $ \s -> Nothing flAIways }
fails
item = P $ \s -> case s of
(c:s') -> Just (c,s')
N -> Nothing <// parses a
single
Char

Not so useful on their own — but will be handy in
combination with other parsers...

Basic parsers (2)

(+++) :: Parser a -> Parser a -> Parser a

p +++q =P $ \s ->

listToMaybe [x | Just x <- [p s, q s]]

the successful
parses

return the first
successful parse

J

try parsing
both with p

~

and with q
- /

Basic Parsers

Lets define some functions to build some basic

parsers

sat :: (Char -> Bool) -> Parser Char

sat prop = P $ \s ->
case s of
(c:cs) | prop c -> Just (c,cs)
_ -> Nothing
digit = sat isDigit

char :: Char -> Parser Char will redefine sat later from

char x = sat (== Xx)

more basic parsers

|

Example

Main> parse (number +++ success 42) "123xxx"
Just (123, "xxx"
Main> parse (number +++ success 42) "xxx"
Just (42, "xxx"
Main> map (parse $§ sat isDigit +++ char '{')
["{hello", "8{hello", "hello"]
[Just ('[',"hello"),Just ('8',"[hello"),Nothing]

Basic parsers (2)

pmap :: (a -> b) -> Parser a -> Parser b
pmap f p =P $ \s ->
case parse p s of
Nothing -> Nothing
Just (a,s') -> Just (f a ,s')

Main> pmap digitToInt (sat isDigit) "1+2"
Just (1,"+2)")

Parse one thing after another

Several ways to parse one thing then another, e.q.
— parse first thing, discard result then parse second thing
(function (>->))
— parse first thing, parse and discard a second thing, return
result of the first (<-<)

— parse the first thing and then parse a second thing in a way
which depends on the value of the first (function (>*>))

— parse a sequence of as many things as possible (functions
zeroOrMore, oneOrMore)

Parse one thing after another

(>->) :: Parser a -> Parser b -> Parser b
throws awe
(p>->9g) s=P3%\s -> result of first
case parse p s of
Nothing -> Nothing

Just (, s’) -> g s’

Main> parse (char ‘[' >-> sat 1isDigit) “[1+2]”
JUSt (|1|’||+2]||)

Parse one thing after another

>*> :: Parser a -> (a -> Parser b) -> Parser b

p >*> f =P $ \s -»>
case parse p s of
Nothing -> Nothing
Just (a,rest) -> parse (f a) rest

Main> parse (digit >*> \a -> sat (>a)) "12xxx"
Just ('2","xxx"

Main> parse (digit >*> \a -> sat (»>a)) "loxxx"
Nothing

p >*> f

>*> can be used to define earlier operations

sat :: (Char ->» Bool) -»> Parser Char
sat p = item >*> \a -> if p a then success a
else failure

Pp >->qg=p >> _ ->¢

pmap :: (a -> b) -> Parser a -> Parser b
pmap f p = p >*> \a->success (f a)

Derived Parsers

(>->) :: Parser a -> Parser b -> Parser b

P >>qg=p>>_->¢q (as before) throws away the
result of first parser

(<-<) :: Parser a -> Parser b -> Parser a

p <-<. g =p >*> \a -> g >-> success a

throws away the result of second parser }

Main> (sat isDigit <-< char '>') "2>xxx"
Just ('2',"xxx")

Parsing sequences to lists

(<:>) :: Parser a -> Parser [a] -> Parser [a]
p <:>qgq=p >> \a -> pmap (a:) ¢

zeroOrMore,oneOrMore :: Parser a -> Parser [a]

oneOrMore p +++ success []
p <:> zeroOrMore p

zeroOrMore p
oneOrMore p

Main> zeroOrMore (sat isDigit) "1234xxxx"

Just ("1234","xxxx"

Main> zeroOrMore (sat isDigit) "x1234xxx"

Just ("","x1234xxx")

Main> (char '@' <:> oneOrMore (char '+')) "@++xxx"

Just ("@++", "Xxxx)

number ::

number

nu
num =

Example:

Building a Parser for Expr

Parse Integer

= pmap read $ oneOrMore (sat isDigit)

read can't fail here since it is only applied
to a list of digits!

Parse Expr
pmap Num number

Int -> ép\ﬂ hr‘ Integer

Exercise: extend to
include negative
numbers too

- 4/

Building Parsers with Parsers

expr, term, factor :: Parser Expr

expr
term

foldll Add “pmap chain term (char '+")
foldll Mul "pmap” chain factor (char '*')

factor = (char "'(' >-> expr <-< char ')")
+++ num

chain :: Parser a -> Parser b -> Parser [a]
chain p g = p <:> zeroOrMore (q >-> p)

Terminology

* A “monadic value” is just an expression whose
type is an instance of class Monad

 “tis a monad” means tis an instance of the
class Monad

* We have often called a monadic value an
“Instruction”. This is not standard terminology

— but sometimes they are called “actions”

